We have develop a proteogenomics-based approach for identification of human MHC class I-associated peptides, including those deriving from polymorphisms, mutations and non-canonical reading frames Overall design: RNA-seq of human EBV-infected B lymphoblasts derived from peripheral blood mononuclear cells from volunteers Please note that GSM1641204 and GSM1641205 are reanalyzed and duplicated sample records of GSM1186811 and GSM1186812, respectively, for the convenient retrieval of the complete raw data from SRA
Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames.
No sample metadata fields
View SamplesWe developed a novel approach combining next generation sequencing, bioinformatics and mass spectrometry to assess the impact of non-MHC polymorphisms on the repertoire of MHC I-associated peptides (MIPs). We compared the genomic landscape of MIPs eluted from B lymphoblasts of two MHC-identical siblings and determined that MIPs mirror the genomic frequency of non-synonymous polymorphisms but they behave as recessive traits at the surface level. Moreover, we showed that 11.7% of the MIP coding exome is polymorphic at the population level. Our method provides fundamental insights into the relation between the genomic self and the immune self and accelerates the discovery of polymorphic MIPs (also known as minor histocompatibility antigens), which play a major role in allo-immune responses. Overall design: RNA-seq of human B lymphoblasts derived from peripheral blood mononuclear cells from 2 HLA-identical female siblings.
Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides.
Specimen part, Subject
View SamplesNonsense-mediated mRNA decay (NMD) surveillance pathways are best known to be involved in the degradation of mRNA with premature termination codons (PTCs). More recent studies demonstrate that the role of NMD pathways goes well beyond the degradation of PTC containing mRNA, into the regulation of cell function and thus normal development.
Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability.
Specimen part, Disease, Disease stage, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability.
Specimen part, Disease, Disease stage, Cell line, Subject
View SamplesSynapse development and neuronal activity represent fundamental processes for the establishment of cognitive function. Structural organization as well as signalling pathways from receptor stimulation to gene expression regulation are mediated by synaptic activity and misregulated in neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). Deleterious mutations in the PTCHD1 (Patched domain containing 1) gene have been described in male patients with X-linked ID and/or ASD. The structure of PTCHD1 protein is similar to the Patched (PTCH1) receptor; however, the cellular mechanisms and pathways associated with PTCHD1 in the developing brain are poorly determined. Here we show that PTCHD1 displays a C-terminal PDZ-binding motif that binds to the postsynaptic proteins PSD95 and SAP102. We also report that PTCHD1 is unable to rescue the canonical sonic hedgehog (SHH) pathway in cells depleted of PTCH1, suggesting that both proteins are involved in distinct cellular signalling pathways. We find that Ptchd1 deficiency in male mice (Ptchd1-/y) induces global changes in synaptic gene expression, affects the expression of the immediate-early expression genes Egr1 and Npas4 and finally impairs excitatory synaptic structure and neuronal excitatory activity in the hippocampus, leading to cognitive dysfunction, motor disabilities and hyperactivity. Thus our results support that PTCHD1 deficiency induces a neurodevelopmental disorder causing excitatory synaptic dysfunction. Overall design: 6 samples RNA-seq. 3 kos, 3wts.
Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse.
Specimen part, Cell line, Subject
View SamplesWe integrated three transplant rejection microarray studies examining gene expression in samples from pediatric renal, adult renal, and adult heart transplants. We performed one study ourselves and retrieved two others from the NCBI Gene Expression Omnibus (GEO)(GSE4470 and GSE1563). We identified 45 genes that were upregulated in common in acute rejection. Half were involved in one immune-related pathway. Among ten proteins we tested by serum ELISA, three successfully distinguished acute rejection from stable transplants. These were CXCL9, PECAM1, and CD44, with areas under the receiver operating characteristic curves of 0.844, 0.802, and 0.738, respectively. Immunohistochemistry showed that the PECAM1 protein was increased in acute rejection in renal, liver and heart transplants versus normal tissues. Our results show that integrating publicly-available gene expression data sets is a fast, powerful, and cost-effective way to identify serum-detectable diagnostic biomarkers.
Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection.
No sample metadata fields
View SamplesBackground
A systems biology approach reveals common metastatic pathways in osteosarcoma.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma.
No sample metadata fields
View SamplesFollicular Lymphomas are blood tumors growing as spheres in patients. Before this study, there was no experimental model mimicking the 3D organization of these in vivo tumors. We develop such a model, called MALC, and observed a progressive enrichment in quiescent cells in these with time of culture; these cells were sorted, as their cycling counterparts, and their transcriptomes were compared. We used microarrays to detail the differential global gene expression profile between quiescent and cycling cells isolated from MALC.
Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma.
No sample metadata fields
View SamplesFollicular Lymphomas are blood tumors growing as spheres in patients. Before this study, there was no experimental model mimicking the 3D organization of these in vivo tumors. We develop such a model, called MALC, and performed a pan-genomic comparative analysis between MALC and classical suspension cultures. We used microarrays to detail the global gene expression profile induced by aggregated growth of lymphoma cells.
Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma.
No sample metadata fields
View Samples