To examine the transcriptome of early testicular somatic cells during gonadogenesis at 12.5dpc RNA sequencing (RNA-Seq) was performed on murine primary testicular cell lineages isolated from the Sf1-eGFP line by FACS. The three main somatic cell lineages of the testis were isolated: the Sertoli cells which direct male development; the fetal Leydig cells (FLCs) that produce steroid hormones and virilise the XY individual and a heterogenous population of interstitial cells, some of which give rise to the adult Leydig cells (ALCs). This dataset provides a platform for exploring the biology of FLCs and understanding the role of these cells in testicular development and masculinization of the embryo, and a basis for targeted studies designed to identify causes of idiopathic XY DSD. Overall design: RNA-Seq of 3 enriched cell populations from 12.5dpc mouse gonad (Sertoli cells, Leydig cells and Interstitial cells isolated by FACS-sorting) on an Illumina HiSeq 1500, in triplicate.
Purification and Transcriptomic Analysis of Mouse Fetal Leydig Cells Reveals Candidate Genes for Specification of Gonadal Steroidogenic Cells.
No sample metadata fields
View SamplesIn this study, the prognostic properties of miR-205 expression levels are investigated in a well-documented prostate cancer cohort. We show that miR-205 is correlated to shortened overall survival, significantly dividing the PCa patients into high and low risk groups. Furthermore, miR-205 is shown to inversely correlate to occurrence of metastases. In situ hybridization is also performed, demonstrating high miR-205 expression in the basal cells of benign prostate tissue glands. A RIP-Chip assay using an AGO2 antibody was implemented and the miR-205 targets identified were found to be enriched in MAPK/ERK, Toll-like receptor and IL-6 signaling pathways. We also found individual targets involved in cancer and androgen receptor signaling. Ectopic levels of miR-205 are shown to decrease the level of androgen receptor both at the mRNA and protein levels in prostate cancer cell lines. This is further corroborated in the prostate cancer cohort were miR-205 expression levels in the prostatic tissues are found to inversely correlate to assessment of androgen receptor (AR) immunostaining and to serum levels of PSA, a protein regulated by AR signaling. The level of miR-205 is also found to be significantly lower in castration resistant prostate cancer patients than in hormone nave patients. Our data indicates that miR-205 is regulated by androgens and act by different mechanisms in androgen depleted settings, e.g. giving opposite effects on adhesion. Taken together these findings imply that miR-205 might have therapeutic potential especially for the castration resistant and currently untreatable form of prostate cancer.
miR-205 negatively regulates the androgen receptor and is associated with adverse outcome of prostate cancer patients.
Specimen part, Cell line
View SamplesHeterochromatin protein 1a (HP1a) is a chromatin associated protein that has been well studied in many model organisms, such as Drosophila, where it is a determining factor for classical heterochromatin. HP1a is associated with the two histone methyltransferases SETDB1 and Su(var)3-9, which mediate H3K9 methylation marks and participate in the establishment and spreading of HP1a enriched chromatin. While HP1a is generally regarded as a factor that represses gene transcription, several reports have linked HP1a binding to active genes, and in some cases, it has been shown to stimulate transcriptional activity. To clarify the function of HP1a in transcription regulation and its association with Su(var)3-9, SETDB1 and the chromosome 4 specific protein POF, we conducted genome-wide expression studies and combined the results with available binding data in Drosophila melanogaster. The results suggested that HP1a has a repressing function on chromosome 4, where it preferentially targets non-ubiquitously expressed genes (NUEGs), and a stimulating function in pericentromeric regions. Further, we showed that the effects of SETDB1 and Su(var)3-9 are similar to HP1a, and on chromosome 4, Su(var)3-9, SETDB1 and HP1a target the same genes. In contrast, transposons are repressed by HP1a and Su(var)3-9 but are un-affected by SETDB1 and POF. In addition, we found that the binding level and expression effects of HP1a are affected by gene length. Our results indicate that genes have adapted to be properly expressed in their local chromatin environment.
HP1a, Su(var)3-9, SETDB1 and POF stimulate or repress gene expression depending on genomic position, gene length and expression pattern in Drosophila melanogaster.
No sample metadata fields
View SamplesStudy of single and double mutants of the two roX RNAs in D. melanogaster Overall design: Study of single and double mutants of the two roX RNAs in D. melanogaster
RNA-on-X 1 and 2 in Drosophila melanogaster fulfill separate functions in dosage compensation.
Specimen part, Cell line, Subject
View SamplesThe aim was to identify genes that were commonly influenced by a siRNA targeting PRKCD in breast cancer cell lines.
Down Regulation of CLDND1 Induces Apoptosis in Breast Cancer Cells.
Cell line, Treatment
View SamplesHuman mesenchymal stem cells or multipotent stromal cells (MSCs) are of interest for clinical therapy, in part because of their capacity for proliferation and differentiation. However, results from clinical trials and in vitro models have been variable, possibly due to MSC heterogeneity and a lack of standardization between MSC in vitro expansion protocols. Here we defined changes in MSCs during expansion in vitro. In low density cultures, MSCs expand through distinct lag, exponential growth and stationary phases. We assayed cultures of passage 2 human MSCs from three donors at low density (50 cells/cm2) at about 5% confluence on Day 2 and after the cultures had expanded to about 70% confluence on Day 7. On Day 2 genes involved in cell division were up-regulated. On Day 7 genes for cell development were up-regulated. The variations between three donors were less than the variation within the expansion of MSCs from a single donor. The microarray data for selected genes were confirmed by real-time PCR, ELISA and FACScan. About 50% of cells at Day 2 were in S-phase compared to 10% at Day 7. The results demonstrated major differences in early and late stage cultures of MSCs that should be considered in using the cells in experiments and clinical applications.
Human multipotent stromal cells undergo sharp transition from division to development in culture.
No sample metadata fields
View SamplesExpression profiling by high throughput sequencing Overall design: 23 Tumor samples were obtained from a Sleeping Beauty forward genetic screen and sequenced using Illumina HiSeq 2000
<i>Sleeping Beauty</i> Insertional Mutagenesis Reveals Important Genetic Drivers of Central Nervous System Embryonal Tumors.
Specimen part, Subject
View SamplesWe analyzed the genome-wide expression by RNA-seq of a yeast strain that expresses Cas9d and a guideRNA targeted to the GAL10 locus (called +116), which inhibits GAL10 ncRNA expression from the antisense strand. We compared this strain to a strain expressing a scrambled guideRNA. The goal was to examine the effects of ncRNA inhibition and to examine if CRISPR inhibition of gene expression has off-target effects. We find that CRISPR-mediated inhibtion of GAL10 ncRNA only significantly changes expression of transcripts at the GAL1-10 locus, showing that CRISPR is highly specific, and that GAL10 ncRNA only control genes at the GAL locus. Overall design: RNA-seq of 2 strains with CRISPR scrambled and 2 strains with CRISPR +116, the latter of which inhibits GAL10 ncRNA
Single-Molecule Imaging Reveals a Switch between Spurious and Functional ncRNA Transcription.
Cell line, Subject
View SamplesAneuploidy, i.e., variation in the number of individual chromosomes (chromosomal aneuploidy) or chromosome segment (segmental aneuploidy) is associated with developmental abnormalities and reduced fitness in all species examined, is the leading cause of miscarriages and mental retardations and a hallmark of cancer. Despite their documented importance in disease the effects of aneuploidies on the transcriptome remains largely unknown. Here we have examined the expression output in seven deficiency heterozygotes as single deficiencies and in all pairwise combinations. The results show that genes in one copy are buffered, i.e., are expressed above the expected 50% expression level compared to wild type and the buffering is general and not influenced by additional haploid regions. Long genes are significantly better buffered than short genes and our analysis suggests that gene length is the primary determinant for the degree of buffering. For short genes the degree of buffering depends on expression level and expression pattern. Furthermore, the results show that in deficiency heterozygotes the expression of genes involved in proteolysis is enhanced and negatively correlates with the degree of buffering. Our results suggest that proteolysis is a general response induced by aneuploidy.
Buffering and proteolysis are induced by segmental monosomy in Drosophila melanogaster.
Sex
View SamplesThe ATP-dependent DExH/D-box helicase DHX9 is a key participant in a number of gene regulatory steps, including transcriptional, translational, microRNA-mediated control, DNA replication, and maintenance of genomic stability. DHX9 has also been implicated in maintenance of the tumorigenic process and in drug response. Here, we report that inhibition of DHX9 expression is lethal to multiple human and mouse cancer cell lines. In contrast, using a novel conditional shDHX9 mouse model, we demonstrate that sustained and prolonged suppression of DHX9 is well tolerated at the organismal level. Our results demonstrate a robust tolerance for DHX9 knockdown in non-transformed cells and supports the targeting of DHX9 as an effective and specific chemotherapeutic approach.
Tumor cell survival dependence on the DHX9 DExH-box helicase.
Specimen part
View Samples