To explore the primary cause of Dilated Cardiomyopathy in heart samples from DCM-diagnosed patients who had undergone heart transplant (hDCM), we set out to identify differentially expressed genes by massively parallel sequencing of heart samples. Overall design: Methods: Heart mRNA profiles from DCM-diagnosed patients who had undergone heart transplant (hDCM) were generated by deep sequencing, in triplicate, using Illumina GAIIx.
Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.
No sample metadata fields
View SamplesTo explore the primary cause of Dilated Cardiomyopathy in Bmi1-null mice, we set out to identify differentially expressed genes by massively parallel sequencing of heart samples from Bmi1f/f;aMHCTM-Cretg/+ mice versus aMHCTM-Cretg/+ control mice (17 weeks postinduction). Overall design: Methods: Heart mRNA profiles of 17-weeks post-induction Bmi1f/f; MHCTM-Cretg/+ mice and MHCTM-Cretg/+ control mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. Sequence reads were pre-processed with Cutadapt 1.2.1, to remove TruSeq adapters and mapped on the mouse transcriptome (Ensembl gene-build GRCm38.v70) using RSEM v1.2.3. The Bioconductor package EdgeR was used to normalize data with TMM and to test for differential expression of genes using GLM.
Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence.
No sample metadata fields
View SamplesIn multicellular organisms, dedicated regulatory circuits control cell-type diversity and response. The crosstalk and redundancies within these circuits and substantial cellular heterogeneity pose a major research challenge. We present CRISP-seq, an integrated method for massively parallel single-cell RNA-seq and CRISPR pooled screens. We show that profiling the perturbation and transcriptome in the same cell, enables to elucidate, the function of multiple factors and their interactions. In this benchmarking study, we applied this technology to probe regulatory circuits of innate immunity. By sampling tens of thousands of perturbed cells in vitro and in mice, we identified interactions and redundancies between developmental and signaling-dependent factors controlling the commitment toward different cell lineages or the inflammatory and antiviral pathways. CRISP-seq thereby emerges as a broadly applicable, comprehensive, and unbiased approach for elucidating mammalian regulatory circuits. Overall design: Transcriptional and CRISPR profiles from single myeloid cells, infected with lentiviral vectors carrying different gRNAs, were generated by deep sequencing of tens of thousands of single cells, sequenced in several batches in an Illumina Nextseq 500. Experiment was paired-end, but read2 was used to read cell and molecule barcodes only. Additional details about experimental design (associating each single cell with its amplification batch and index sorting readout) available as Series supplementary file.
Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq.
Specimen part, Cell line, Treatment, Subject
View SamplesWe develop a new ChIpseq method (iChIP) to profile chromatin states of low cell number samples. We use IChIP to profile the chromatin dynamics during hematopoiesis across 16 different cell types which include the principal hematopoietic progenitors Overall design: 3'' RNA-seq for digital gene expression quantitation across multiple cell types.
Immunogenetics. Chromatin state dynamics during blood formation.
No sample metadata fields
View SamplesSingle cell RNA sequencing of murine circulating blood monocytes under steady state conditions. 2 plates of cx3cr1-cre:rosa26YFP monocytes and 4 plates (3 plates total monocytes and 1 plate Ly6Cint monocytes) were pre-enriched by CD115-biotin MACS and afterwards FACS sorted. Overall design: Indexed FACS sorting in 384well plates followed by MARS-Seq (Jaitin et al., Science 2014).
Genomic Characterization of Murine Monocytes Reveals C/EBPβ Transcription Factor Dependence of Ly6C<sup>-</sup> Cells.
Sex, Age, Specimen part, Cell line, Subject
View SamplesHeterochromatin protein 1a (HP1a) is a chromatin associated protein that has been well studied in many model organisms, such as Drosophila, where it is a determining factor for classical heterochromatin. HP1a is associated with the two histone methyltransferases SETDB1 and Su(var)3-9, which mediate H3K9 methylation marks and participate in the establishment and spreading of HP1a enriched chromatin. While HP1a is generally regarded as a factor that represses gene transcription, several reports have linked HP1a binding to active genes, and in some cases, it has been shown to stimulate transcriptional activity. To clarify the function of HP1a in transcription regulation and its association with Su(var)3-9, SETDB1 and the chromosome 4 specific protein POF, we conducted genome-wide expression studies and combined the results with available binding data in Drosophila melanogaster. The results suggested that HP1a has a repressing function on chromosome 4, where it preferentially targets non-ubiquitously expressed genes (NUEGs), and a stimulating function in pericentromeric regions. Further, we showed that the effects of SETDB1 and Su(var)3-9 are similar to HP1a, and on chromosome 4, Su(var)3-9, SETDB1 and HP1a target the same genes. In contrast, transposons are repressed by HP1a and Su(var)3-9 but are un-affected by SETDB1 and POF. In addition, we found that the binding level and expression effects of HP1a are affected by gene length. Our results indicate that genes have adapted to be properly expressed in their local chromatin environment.
HP1a, Su(var)3-9, SETDB1 and POF stimulate or repress gene expression depending on genomic position, gene length and expression pattern in Drosophila melanogaster.
No sample metadata fields
View SamplesStudy of single and double mutants of the two roX RNAs in D. melanogaster Overall design: Study of single and double mutants of the two roX RNAs in D. melanogaster
RNA-on-X 1 and 2 in Drosophila melanogaster fulfill separate functions in dosage compensation.
Specimen part, Cell line, Subject
View SamplesThe aim was to identify genes that were commonly influenced by a siRNA targeting PRKCD in breast cancer cell lines.
Down Regulation of CLDND1 Induces Apoptosis in Breast Cancer Cells.
Cell line, Treatment
View SamplesHuman mesenchymal stem cells or multipotent stromal cells (MSCs) are of interest for clinical therapy, in part because of their capacity for proliferation and differentiation. However, results from clinical trials and in vitro models have been variable, possibly due to MSC heterogeneity and a lack of standardization between MSC in vitro expansion protocols. Here we defined changes in MSCs during expansion in vitro. In low density cultures, MSCs expand through distinct lag, exponential growth and stationary phases. We assayed cultures of passage 2 human MSCs from three donors at low density (50 cells/cm2) at about 5% confluence on Day 2 and after the cultures had expanded to about 70% confluence on Day 7. On Day 2 genes involved in cell division were up-regulated. On Day 7 genes for cell development were up-regulated. The variations between three donors were less than the variation within the expansion of MSCs from a single donor. The microarray data for selected genes were confirmed by real-time PCR, ELISA and FACScan. About 50% of cells at Day 2 were in S-phase compared to 10% at Day 7. The results demonstrated major differences in early and late stage cultures of MSCs that should be considered in using the cells in experiments and clinical applications.
Human multipotent stromal cells undergo sharp transition from division to development in culture.
No sample metadata fields
View SamplesExpression profiling by high throughput sequencing Overall design: 23 Tumor samples were obtained from a Sleeping Beauty forward genetic screen and sequenced using Illumina HiSeq 2000
<i>Sleeping Beauty</i> Insertional Mutagenesis Reveals Important Genetic Drivers of Central Nervous System Embryonal Tumors.
Specimen part, Subject
View Samples