Juvenile myelomonocytic leukemia (JMML) is a very rare and aggressive stem cell disease that mainly occurs in young children. RAS activation constitutes the core component of oncogenic signaling. In addition, the leukemic blasts of a quarter of JMML patients present with monosomy 7 (-7), whereas more than half of the patients show enhanced age-adjusted fetal hemoglobin (HbF) levels. Hematopoietic stem cell transplantation is the current standard of care. This results in an event-free survival of 50 - 60%, indicating that novel molecular driven therapeutic options are urgently needed. Using gene expression profiling in an extensive series of 82 patient samples, we aimed at understanding the molecular biology behind JMML and identified a previously unrecognized molecular subgroup characterized by high LIN28B expression.
LIN28B overexpression defines a novel fetal-like subgroup of juvenile myelomonocytic leukemia.
Disease
View SamplesThis study utilized a standard rat model of aging and global gene expression analyses to attempt to identify the most appropriate time points to study vascular aging and to identify molecules associated with the development of pathology.
Development of progressive aortic vasculopathy in a rat model of aging.
No sample metadata fields
View SamplesResistance to tamoxifen in breast cancer patients is a serious therapeutic problem and major efforts are underway to understand underlying mechanisms. Resistance can be either intrinsic or acquired. We derived a series of subcloned MCF7 cell lines that were either highly sensitive or naturally resistant to tamoxifen and studied the factors that lead to drug resistance. Gene-expression studies revealed a signature of 67 genes that differentially respond to tamoxifen in sensitive vs. resistant subclones, which also predicts disease-free survival in tamoxifen-treated patients. High-throughput cell-based screens, in which >500 human kinases were independently ectopically expressed, identified 31 kinases that conferred drug resistance on sensitive cells. One of these, HSPB8, was also in the expression signature and, by itself, predicted poor clinical outcome in one cohort of patients. Further studies revealed that HSPB8 protected MCF7 cells from tamoxifen and blocked autophagy. Moreover, silencing HSBP8 induced autophagy and caused cell death. Tamoxifen itself induced autophagy in sensitive cells but not in resistant ones, and tamoxifen-resistant cells were sensitive to the induction of autophagy by other drugs. These results may point to an important role for autophagy in the sensitivity to tamoxifen.
High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy.
Specimen part, Cell line
View SamplesThe response of bacteria to the conditions at the site of infection is a key part of the transcriptional program that will determine the sucess of the infectious agent. To model the environment of the distal airway, we used bovine pulmonary surfactant (Survanta). P. aeruginosa transcript levels were measured in the presence or absence of Survanta in MOPS minimal medium to identify transcripts altered in response to surfactant. The most highly induced transcript in Survanta was PA5325, renamed sphA based on our findings that the gene was specifically induced by sphingosine derived from the sphingomyelin present in pulmonary surfactant. A divergently transcribed transcription factor, PA5324, was demonstrated to be critical for the sphingosine dependent induction of sphA and was therefore renamed SphR. Microarrays of the sphR mutant cells were compared to wild type to determine the likely SphR regulon.
Detection of host-derived sphingosine by Pseudomonas aeruginosa is important for survival in the murine lung.
Treatment
View SamplesDespite 20 years since its discovery, the gene responsible for Huntington’s Disease, HTT, has still not had its function or transcriptional profile completely characterized. In response to a recent report by Ruzo et al. of several novel splice forms of HTT in human embryonic stem cell lines, we have analyzed a set of mRNA sequencing datasets from post mortem human brain from Huntington’s disease, Parkinson’s disease, and neurologically normal control subjects to evaluate support for previously observed and to identify novel splice patterns. A custom analysis pipeline produced supporting evidence for some of the results reported by two previous studies of alternative isoforms as well as identifying previously unreported splice patterns. All of the alternative splice patterns were of relatively low abundance compared to the canonical splice form. Overall design: 29 Huntington''s Disease, 29 Parkinson''s Disease, and 50 Neurologically normal control samples from human post-mortem prefrontal cortex
Evidence of Extensive Alternative Splicing in Post Mortem Human Brain HTT Transcription by mRNA Sequencing.
No sample metadata fields
View SamplesWe have generated a large collection of normal human mammary epithelial cell strains from women aged 16 to 91 years, derived from primary tissues, to enable functional and molecular interrogation of aging. We demonstrate in finite-lifespan cultured and uncultured epithelial cells that aging is associated with reduction of myoepithelial cells and with increases in luminal cells expressing keratin 14 and integrin 6, traits that are expressed exclusively in myoepithelial cells in women under 30. We find that changes to the luminal lineage result from age-dependent expansion of multipotent progenitors that bear defects resulting in incompletely differentiated luminal cells. These findings were verified in vivo in normal breast tissues. Myoepithelial cells have been suggested to act as tumor suppressors, and progenitor cells are implicated as the etiological roots of mammary carcinomas. Thus with aging there is a shift in the balance of luminal/myoepithelial lineages, and changes in the functional spectrum of multipotent progenitors, which presages increased potential for malignant transformation.
Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells.
No sample metadata fields
View SamplesNu61, a radiation-resistant human tumor xenograft, was selected from a parental radiosensitive tumor SCC-61 by eight serial cycles of passage in athymic nude mice and in vivo irradiation.
STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells.
No sample metadata fields
View SamplesPseudomonas aeruginosa displays tremendous metabolic diversity, controlled in part by the abundance of transcription regulators in the genome. We have been investigating P. aeruginosas response to the host, particularly changes regulated by the host-derived quaternary amines choline and glycine betaine (GB). We previously identified GbdR as an AraC-family transcription factor that directly regulates choline acquisition from host phospholipids (via binding to plcH and pchP promoters), is required for catabolism of the choline metabolite GB, and is an activator that induces transcription in response to GB or dimethylglycine. Our goal was to characterize the GbdR regulon in P. aeruginosa using genetics and chemical biology in combination with transcriptomics and in vitro DNA-binding assays. Here we show that GbdR activation regulates transcription of 26 genes from 12 promoters; 11 of which have measureable binding to GbdR in vitro. The GbdR regulon includes the genes encoding GB, dimethylglycine, sarcosine, glycine, and serine catabolic enzymes, and the BetX and CbcXWV quaternary amine transport proteins. . Additionally, identification of two uncharacterized regulon members suggests roles for these proteins in response to choline metabolites.
Characterization of the GbdR regulon in Pseudomonas aeruginosa.
Treatment
View SamplesNu61, a radiation-resistant human tumor xenograft, was selected from a parental radiosensitive tumor SCC-61 by eight serial cycles of passage in athymic nude mice and in vivo irradiation.
STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells.
No sample metadata fields
View Samples