This SuperSeries is composed of the SubSeries listed below.
Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.
Sex, Subject
View SamplesEpigenomic and transcriptomic analysis of Systemic Sclerosis CD4+ T cells reveals long range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci range dysregulation of key inflammatory pathways mediated by disease-associated
Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.
Sex, Subject
View SamplesCombination of GSI with fludarabine has a synergistic antileukemic effect in primary NOTCH1-mutated CLL cells
The γ-secretase inhibitor PF-03084014 combined with fludarabine antagonizes migration, invasion and angiogenesis in NOTCH1-mutated CLL cells.
Specimen part
View SamplesPrecursor T-cell lymphoblastic neoplasms are aggressive haematological neoplasm that most often manifest with extensive marrow and blood affectation (T-cell acute lymphoblastic leukaemia or T-ALL) or less commonly as a thymic mass with limited bone marrow infiltration (T-cell lymphoblastic lymphoma or T-LBL). Here we show data from RNA-Seq in a sample series of T-LBL from Spanish patients.The goal was to determine the levels of expression of coding genes and microRNAs, and to identify all genetic variants including SNVs, indels, and fusion transcripts. Overall design: Expression data were determined by comparson of each tumour sample with two control thymuses (404 and 405). Genetic variants were determined by comparison of tumour sequences with canonical ENSEMBL normal-references of each gene.
RNA-Seq reveals the existence of a CDKN1C-E2F1-TP53 axis that is altered in human T-cell lymphoblastic lymphomas.
Specimen part, Subject
View SamplesTrastuzumab improves survival outcomes in patients with HER2+ metastatic breast cancer. Some of these patients may become long-term survivors. The Long-Her study was designed to identify clinical and molecular markers that could differentiate long-term survivors from patients having early progression to trastuzumab.
The Long-HER study: clinical and molecular analysis of patients with HER2+ advanced breast cancer who become long-term survivors with trastuzumab-based therapy.
Age, Disease
View SamplesHutchinson-Gilford Progeria Syndrome (HGPS) is caused by a point mutation in the LMNA gene that activates a cryptic donor splice site and yields a truncated form of prelamin A called progerin. Small amounts of progerin are also produced during normal aging. Studies with mouse models of HGPS have allowed the recent development of the first therapeutic approaches for this disease. However, none of these earlier works have addressed the aberrant and pathogenic LMNA splicing observed in HGPS patients because of the lack of an appropriate mouse model. We report herein a genetically modified mouse strain that carries the HGPS mutation. These mice accumulate progerin, present histological and transcriptional alterations characteristic of progeroid models, and phenocopy the main clinical manifestations of human HGPS, including shortened life span and bone and cardiovascular aberrations. By using this animal model, we have developed an antisense morpholinobased therapy that prevents the pathogenic Lmna splicing, dramatically reducing the accumulation of progerin and its associated nuclear defects. Treatment of mutant mice with these morpholinos led to a marked amelioration of their progeroid phenotype and substantially extended their life span, supporting the effectiveness of antisense oligonucleotidebased therapies for treating human diseases of accelerated aging.
Splicing-directed therapy in a new mouse model of human accelerated aging.
Sex, Age, Specimen part
View SamplesMammalian epidermal stem cells maintain homeostasis of skin epidermis and contribute to its regeneration throughout adult life. While two-dimensional mouse epidermal stem cell cultures have been established decades ago, a long-term, feeder cell- and serum-free culture system recapitulating murine epidermal architecture has not been available. Here we describe an epidermal organoid culture system that allows long-term, genetically stable expansion of adult epidermal stem cells. Our epidermal expansion media combines atypically high calcium concentrations, activation of cyclic AMP, FGF and R-spondin signaling with inhibition of BMP signaling. Organoids are established robustly from adult mouse skin and expand over at least 6 months, while maintaining the basal-apical organization of the mouse interfollicular epidermis. The system represents a powerful tool to study epidermal homeostasis and disease in vitro. Overall design: We establish an organoid culture system for long-term expansion of mouse epidermal stem cells. Using histological methods as well as low-coverage multiplexed RNA sequencing, we show that cultured organoids resembled interfollicular epidermis. We analyzed a total of 23 samples, including 6 controls that are isolated from the skin of mice. None-passaged as well as cultured organoids were compared with replicates. Differences growth factors and small molecules that allow expansion of organoids were compared with replicates.
Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae.
No sample metadata fields
View SamplesThe role of ERbeta2 in zebrafish larvae was investigated by injection of a Morpholino against ERbeta2. After 72hpf, the morphants showed a strong disruption in their sensory systems. ERbeta2 has been shown to be needed for the normal functioning of the sensory system organs, the neuromasts. The mechanisms involved in the neuromast disruption in ERbeta2 morphants was identified by microarrays gene screening. After comparison of two screening with low and hign concentration of Morpholinos, genes that were present in the two microarrays screening were selected. The genes were then chosen by relevance for the mechanisms involved in the role of ERbeta2 in neuromast development. The ngn1 transcription factor, Notch3 and Notch1a showed to be up-regulated, also confirmed by in situ hybridization. The Notch signaling is known to be involved in cell fate in developing neuromasts. The overall conclusion is that ERbeta2 by interacting with the notch signaling pathways is critical for normal development of the neuromast of the lateral line in zebrafish.
Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae.
No sample metadata fields
View SamplesThe role of ERbeta2 in zebrafish larvae was investigated by injection of a Morpholino against ERbeta2. After 72hpf, the morphants showed a strong disruption in their sensory systems. ERbeta2 has been shown to be needed for the normal functioning of the sensory system organs, the neuromasts. The mechanisms involved in the neuromast disruption in ERbeta2 morphants was identified by microarrays gene screening. After comparison of two screening with low and high concentration of Morpholinos, genes that were present in the two microarrays screening were selected. The genes were then chosen by relevance for the mechanisms involved in the role of ERbeta2 in neuromast development. The ngn1 transcription factor, Notch3 and Notch1a showed to be up-regulated, also confirmed by in situ hybridization. The Notch signaling is known to be involved in cell fate in developing neuromasts. The overall conclusion is that ERbeta2 by interacting with the notch signaling pathways is critical for normal development of the neuromast of the lateral line in zebrafish.
Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae.
No sample metadata fields
View Samples