Cell lines derived from NK cell neoplasms were characterized using RNA sequencing and high-throughput drug sensitivity profiling to identify therapeutically actionable drivers in malignant NK cells. Overall design: RNA sequencing data was obtained from natural killer and T cell lines for gene expression profiling and mutation detection in parallel with drug sensitivity profiling. The ''NK_cell_line_GEO_drug_sensitivity.txt'' contains drug sensitivity scores of cell lines screened using 459 compounds. Breifly, compounds were preprinted on 384-well plates (Corning) in five different concentrations covering a 10,000-fold concentration range with an acoustic liquid handling device (Echo 550, Labcyte Inc.) and dissolved in 5 l culture medium on a shaker for 10 min. 20 l of single-cell suspension of cell lines (3,000 cells per well) were dispensed using Multi-Drop Combi peristaltic dispenser (Thermo Scientific). Plates were incubated at 37 C and 5% CO2 for 72 h after which cell viability was measured using CellTiter-Glo 2.0 reagent (Promega) according to the manufacturer s instructions with a Pherastar FS plate reader (BMG Labtech). Cell viability luminescence data were normalized to DMSO-only wells (negative control) and 100 mM benzethonium chloride-containing wells (positive control). The data were quantified using the drug sensitivity score (DSS) (Yadav et al., Scientific Reports 2014).
Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target.
Specimen part, Cell line, Subject
View SamplesThere is a growing need for fast and accurate methods for testing developmental neurotoxicity across industrial, pharmaceutical, and environmental chemical exposures. Current approaches, such as in vivo animal studies, and assays of animal and human primary cell cultures, suffer from challenges related to time, cost, and applicability to human physiology. Prior research demonstrated success employing machine learning to predict developmental neurotoxicity using gene expression data collected from complex human 3D tissue models exposed to various compounds, but the complexity of 3D tissue models require extensive expertise and effort to employ. While a 3D tissue model is more physiologically accurate, by focusing only on the goal of constructing an assay of developmental neurotoxicity, we propose that a simpler 2D tissue model may prove sufficient. We thus compared the accuracy of predictive models trained on data from a 2D tissue model with those trained on prior dataset from a more complex 3D tissue model, and found the accuracy of the 2D model to be substantially better than the 3D model. Furthermore, we found that the 2D tissue model is more robust and consistent under stringent gene set selection, whereas the 3D tissue model suffers substantial degradation of accuracy. While both approaches have advantages and disadvantages, we propose that our described 2D tissue model has the potential to serve as a valuable tool for decision makers when prioritizing neurotoxicity screening. Overall design: H1-NPC cells were thawed and expanded in DF3S+N2B27+5ng/ml FGF2 for 5 days before they were harvested by Accutase treatment. Roughly 1x10e5 cells were then seeded into one well of a 48 well plate in DF3S+N2B27. Chemical treatment started on the same day (day 0). Samples are collected at indicated time points by lysing cells directly on plate with 150ul RLT buffer. Chemical information can be found a separate sheet.
Machine learning to predict developmental neurotoxicity with high-throughput data from 2D bio-engineered tissues.
Cell line, Subject, Compound, Time
View SamplesThe genetics of messenger RNA expression has been extensively studied in humans and other organisms, but little is known about genetic factors contributing to microRNA (miRNA) expression. We examined natural variation of miRNA expression in adipose tissue in a population of 200 men who have been carefully characterized for metabolic syndrome phenotypes as part of the METSIM study. We genotyped the subjects using high-density SNP microarrays and quantified the mRNA abundance using genome-wide expression arrays and miRNA abundance using next generation sequencing. We reliably quantified 356 miRNA species that were expressed in human adipose tissue, a limited number of which made up most of the expressed miRNAs. We mapped the miRNA abundance as an expression quantitative trait and determined cis regulation of expression for 9 of the miRNAs and of the processing of one miRNA (miR-28). The degree of genetic variation of miRNA expression was substantially less than that of mRNAs. For the majority of the miRNAs, genetic regulation of expression was independent of the host mRNA transcript expression. We also showed that for 108 miRNAs, mapped reads displayed widespread variation from the canonical sequence. We found a total of 24 miRNAs to be significantly associated with metabolic syndrome traits. We suggest a regulatory role for miR-204-5p which was predicted to inhibit ACACB, a key fatty acid oxidation enzyme that has been shown to play a role in regulating body fat and insulin resistance in adipose tissue. Overall design: miRNA expression profiling of adipose tissue isolated from 200 humans
Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits.
Age, Specimen part, Subject
View SamplesSIRT3 is a mitochondrial NAD(+)-dependent protein deacetylase, which regulates the enzymatic activity of several mitochondrial proteins.
SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome.
Age, Specimen part
View SamplesWe analyzed samples from 770 male human subjects who are part of the METSIM study. Ethics Committee of the Northern Savo Hospital District approved the study. All participants gave written informed consent. The population-based cross-sectional METSIM study included 10 197 men, aged from 45 to 73 years, who were randomly selected from the population register of the Kuopio town in eastern Finland (population 95000). Every participant had a 1-day outpatient visit to the Clinical Research Unit at the University of Kuopio, including an interview on the history of previous diseases and current drug treatment and an evaluation of glucose tolerance and cardiovascular risk factors. After 12 h of fasting, a 2 h oral 75 g glucose tolerance test was performed and the blood samples were drawn at 0, 30 and 120 min. Plasma glucose was measured by enzymatic hexokinase photometric assay (Konelab Systems reagents; Thermo Fischer Scientific, Vantaa, Finland). Insulin was determined by immunoassay (ADVIA Centaur Insulin IRI no. 02230141; Siemens Medical Solutions Diagnostics, Tarrytown, NY, USA). Height and weight were measured to the nearest 0.5 cm and 0.1 kg, respectively. Waist circumference (at the midpoint between the lateral iliac crest and lowest rib) and hip circumference (at the level of the trochanter major) were measured to the nearest 0.5 cm. Body composition was determined by bioelectrical impedance (RJL Systems) in subjects in the supine position.
Genetic Regulation of Adipose Gene Expression and Cardio-Metabolic Traits.
Sex, Age, Specimen part
View SamplesAssessment of mRNA expression levels in fat biopsies from subcutaneous adipose tissue from unrelated individuals.
Galanin preproprotein is associated with elevated plasma triglycerides.
No sample metadata fields
View SamplesExpression profiling following depletion of Mediator Cdk8 module subunits Cdk8, Cyclin C (CycC), Med12 and Med13 72 hours after dsRNA treatment of Drosophila melanogaster S2 cells. Results provide insight into the role of individual Cdk8 module subunits in regulation of transcription.
Cyclin-dependent kinase 8 module expression profiling reveals requirement of mediator subunits 12 and 13 for transcription of Serpent-dependent innate immunity genes in Drosophila.
Specimen part
View SamplesWe generated a murine genetic model of beta-catenin deficiency targeted to the ureteric bud cell lineage to study the role of beta-catenin mediated Wnt signaling during ureteric morphogenesis.
Canonical WNT/beta-catenin signaling is required for ureteric branching.
No sample metadata fields
View SamplesAlternative mRNA splicing provides transcript diversity and has been proposed to contribute to several human diseases. Here, we demonstrate that expression of genes regulating RNA processing is decreased in both liver and skeletal muscle of obese humans. To determine the metabolic impact of reduced splicing factor expression, we further evaluated the splicing factor, SFRS10, identified as down-regulated in obese human liver and skeletal muscle and in high fat fed rodents. siRNA-mediated reductions in SFRS10 expression induced lipogenesis and lipid accumulation in cultured hepatocytes. Moreover, SFRS10 heterozygous mice have both increased hepatic lipogenic gene expression and hypertriglyceridemia. We also demonstrate that LPIN1, a key regulator of lipid metabolism, is a splicing target of SFRS10, with reduced SFRS10 levels favoring the lipogenic isoform of LPIN1. Importantly, LPIN1-specific siRNA abolished the lipogenic effects of decreased SFRS10 expression. Together, our results indicate reduced expression of SFRS10 alters LPIN1 splicing and induces lipogenesis, demonstrating that reduced splicing factor expression observed in human tissues may contribute to metabolic phenotypes associated with human obesity.
Expression of the splicing factor gene SFRS10 is reduced in human obesity and contributes to enhanced lipogenesis.
Age, Subject
View Samples