We established a novel EGFP reporter mouse line (named Tg(ETAR-EGFP)14Imeg), which enables the placode-derived inner ear sensory cell lineage to be visualized and monitored. At E10.5, EGFP expression was detected in the ventral and dorsomedial region of the otocyst.
Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst.
Specimen part
View SamplesTAZ-deficient mice have the abnormalities in the lung development. We expect the comparison of the gene expression profiles of TAZ-deficient and wild-type lungs would reveal the underlying mechanisms.
Transcriptional coactivator with PDZ-binding motif is essential for normal alveolarization in mice.
No sample metadata fields
View SamplesWe used an Aldefluor assay system to study the signaling pathways that regulate the frequency and maintenance of ALDH-positive cell population in MCF-7 cells as a CSC model.
Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation.
Cell line
View SamplesSynchrony between embryo competency and uterine receptivity is essential for a successful implantation. Mice with ablation of COUP-TFII in the uterus (PRCre/+;COUP-TFIIflox/flox), exhibit implantation defects and increased ER activity in the luminal epithelium, suggesting the high ER activity may disrupt the window of uterine receptivity. In order to determine if the increased ER activity in PRCre/+;COUP-TFIIflox/flox mutant is the cause of the defective implantation, we inhibited of ER activity in order to rescue the implantation defect in mutant mice. ICI 182,780 (ICI), a pure ER antagonist, was administered to PRCre/+;COUP-TFIIflox/flox mutant and COUP-TFIIflox/flox control mice during receptive period and the number of implantation sites were examined. COUP-TFIIflox/flox control mice treated with oil or ICI showed the normal number of implantation sites. As expected no implantation sites were observed in PRCre/+;COUP-TFIIflox/flox mutant mice treated with oil, consistent with previous observation. However, implantation sites were detected, albeit at a reduced number in comparison to the control in PRCre/+;COUP-TFIIflox/flox mutant mice upon ICI treatment.. ICI treatment was also able to rescue the expression of WNT4 and BMP2, genes important for endometrial decidualization in the PRCre/+;COUP-TFIIflox/flox mutant mice. To ensure the rescue of embryo attachment and decidualization is a consequence of a reduction of estrogen receptor activity with ICI treatment of the mutants, we examined the expression of ER target gene, such as lactoferrin, in PRCre/+;COUP-TFIIflox/flox mutant mice. Having shown that ICI could rescue the implantation and decidualization defects of the PRCre/+;COUP-TFIIflox/flox mutant mice, the ability of ICI treatment to rescue pregnancy in these mice was assayed. While mice were born in COUP-TFIIflox/flox control mice given ICI, no pups were born in the PRCre/+;COUP-TFIIflox/flox mutant mice, with the loss in pregnancy in the PRCre/+;COUP-TFIIflox/flox mutant mice treated with ICI being due to defects in placentation. These results demonstrate that during the peri implantation period, COUP-TFIIs role in regulating embryo attachment and decidualiton is through the reduction of ER activity. However COUP-TFII expression is still required in the post implantation period to facilitate placentation.
Suppression of ERalpha activity by COUP-TFII is essential for successful implantation and decidualization.
Specimen part
View SamplesNuclear export of mRNA is an essential process for eukaryotic gene expression. TREX complex couples the gene expression from transcription and splicing to mRNA export. Sub2, a core component of TREX complex in yeast is diversified to two closely related RNA helicases, UAP56 and URH49 in human.UAP56 and URH49 are required for bulk poly (A)+ RNA export but their target genes are quite different. In conclusion, UAP56 and URH49 have a different function in vivo despite the highly similarity.
The closely related RNA helicases, UAP56 and URH49, preferentially form distinct mRNA export machineries and coordinately regulate mitotic progression.
Cell line
View SamplesTo identify the gene expression changes that are specific to SBMA, we prepared total mRNA samples from the spinal cords of transgenic mice carrying a full-length human AR with 97 CAGs (AR-97Q), transgenic mice bearing a wild-type allele of AR with 24 CAGs (AR-24Q), and the wild-type littermates of the AR-97Q mice (C57BL/6). We used AR-97Q (Line #7-8) male mice because they show progressive muscular atrophy and weakness as well as SBMA-like pathology such as the accumulation of the pathogenic androgen receptor in the nucleus of motor neurons.
Naratriptan mitigates CGRP1-associated motor neuron degeneration caused by an expanded polyglutamine repeat tract.
Sex
View SamplesThe biologic basis for NSCLC metastasis is not well understood. Here we addressed this deficiency by transcriptionally profiling tumors from a genetic mouse model of human lung adenocarcinoma that develops metastatic disease owing to the expression of K-rasG12D and p53R172H. As a tool to investigate the biologic basis for metastasis in this model and to query the roles of specific genes in this signature, we isolated adenocarcinoma cell lines from these mice and used them to develop a syngeneic tumor model in wild-type littermates. Transcriptional profiling of the highly metastatic subcutaneous tumors revealed genes that regulate, among other processes, epithelial-to-mesenchymal transition and intra-tumoral inflammation and angiogenesis, whereas the non-metastatic tumors did not.
Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression.
No sample metadata fields
View SamplesMetastatic disease is a primary cause of cancer-related death, and factors governing tumor cell metastasis have not been fully elucidated. Here we addressed this question by using tumor cell lines derived from mice that develop metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. A feature of metastasis-prone tumor cells that distinguished them from metastasis-incompetent tumor cells was plasticity in response to changes in their microenvironment. They transited reversibly between epithelial and mesenchymal states, forming highly polarized epithelial spheres in 3-dimensional culture that underwent epithelial-mesenchymal transition (EMT) following treatment with transforming growth factor-beta or injection into syngeneic mice. This plasticity was entirely dependent upon the microRNA-200 family, which decreased during EMT. Forced expression of miR-200 abrogated the capacity of these tumor cells to undergo EMT, invade, and metastasize and conferred transcriptional features of metastasis-incompetent tumor cells. We conclude that microenvironmental cues direct tumor metastasis by regulating miR-200 expression.
Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Expression signatures of metastatic capacity in a genetic mouse model of lung adenocarcinoma.
No sample metadata fields
View SamplesThe biologic basis for NSCLC metastasis is not well understood. Here we addressed this deficiency by transcriptionally profiling tumors from a genetic mouse model of human lung adenocarcinoma that develops metastatic disease owing to the expression of K-rasG12D and p53R172H. We identified 2,209 genes that were differentially expressed in distant metastases relative to matched lung tumors. Mining of publicly available data bases revealed this expression signature in a subset of NSCLC patients who had a poorer prognosis than those without the signature.
Expression signatures of metastatic capacity in a genetic mouse model of lung adenocarcinoma.
No sample metadata fields
View Samples