Because of inherent differences between deceased donor (DD) and living donor (LD) liver grafts, we hypothesize that the molecular signatures will be unique, correlating with specific biologic pathways and clinical patterns. Following reperfusion, 579 genes in DD grafts and 1324 genes in LDs were differentially expressed (p<0.005). Many up-regulated LD genes were related to regeneration, biosynthesis and cell cycle, and a large number of down-regulated genes were linked to hepatic metabolism and energy pathways correlating with post-transplant clinical laboratory findings. There was significant up-regulation of inflammatory/immune genes in both DD and LD, each with a distinct pattern. Gene expression patterns of select genes associated with inflammation and regeneration in LD and DD grafts correlated with protein expression.
Unique early gene expression patterns in human adult-to-adult living donor liver grafts compared to deceased donor grafts.
No sample metadata fields
View SamplesWhile others have reported that fetal liver contains a population of endothelial progenitors based on expression of cell surface markers or culture assays, this is the first proof of a CD31+Sca1+ progenitor by demonstrating highly efficient in vivo angiogenesis and a direct connection to the host vasculature. We have developed a novel isolation method based on collagenase digestion and culture on a fetal liver-derived feeder layer and demonstrate that the feeder cells or their supernatants are required for endothelial progenitor survival and proliferation. Proteogenomic profiling of the endothelial progenitors and the feeder cells was done with tandem mass spectrometry proteomics using MudPIT and gene transcript expression profiling using high density DNA microarrays. This approach identified a number of gene transcripts, proteins and candidate growth factor pathways that are likely to be involved in endothelial progenitor growth, differentiation and angiogenesis.
Isolation and angiogenesis by endothelial progenitors in the fetal liver.
No sample metadata fields
View SamplesEarly diagnosis of transthyretin (TTR) amyloid diseases remains challenging because of variable disease penetrance. Currently, patients must have an amyloid positive tissue biopsy to be eligible for disease modifying therapies. Early diagnosis is often difficult because the patient exhibits apparent symptoms of polyneuropathy or cardiomyopathy, but has a negative amyloid biopsy. Thus, there is a pressing need for more objective, quantitative diagnostics and biomarkers of TTR-aggregation-associated polyneuropathy and cardiomyopathy. This is especially true in the context of clinical trials demonstrating significant disease modifying effects, e.g. when the TTR tetramer stabilizer tafamidis was administered to familial amyloid polyneuropathy (FAP) patients early in the disease course. When asked if the findings of the tafamidis registration trial were sufficiently robust to provide substantial evidence of efficacy for a surrogate endpoint that is reasonably likely to predict a clinical benefit the advisory committee said yes, but the FDA rejected the tetramer stabilization surrogate biomarker required for orphan tafamidis approvalhence, acceptable biomarkers are badly needed. Herein, we explored whether peripheral blood cell mRNA expression profiles could differentiate symptomatic from asymptomatic V30M FAP patients, and if such a profile would normalize upon tafamidis treatment. We demonstrate that blood cell gene expression patterns reveal sex-independent as well as male and female specific inflammatory signatures in symptomatic FAP patients, but not in asymptomatic carriers, that normalize in FAP patients 6 months after tafamidis treatment. Thus these signatures have potential both as an early diagnostic and as a surrogate biomarker for measuring response to treatment in FAP patients.
Peripheral Blood Cell Gene Expression Diagnostic for Identifying Symptomatic Transthyretin Amyloidosis Patients: Male and Female Specific Signatures.
Age, Specimen part
View SamplesMicroarray analyses provide a powerful approach to identify gene expression alterations following kidney transplantation. However, the heterogeneity of human kidney transplant specimens and the variation in sample preparation precludes conclusions regarding the underlying mechanisms of the observed alterations. We used a well defined experimental rat kidney transplantation model with consistent transplant and sample preparation procedures to analyze genome wide changes in gene expression after syngeneic (sTX) and allogeneic transplantation (aTX) four days after transplantation. Both interventions were associated with dramatic changes in gene expression. Genes and Pathways related to immune response were extremely up regulated after aTX. Several of the up regulated genes have been described by other groups and we are able to proof this in one study. But several genes are reported for the first time to be up regulated in expression after renal aTX. The function of these genes in acute rejection process has to be evaluated. On the other hand the up regulation of regulatory or protective genes indicates that regulatory mechanism are activated after aTX trying to down regulate the immune response or protect the tissue against the immune system. The study is capable to serve as a representative study in aTX mediated gene expression by covering the known transcriptional changes reported by other groups and identification of novel markers and pathways. Further analysis of the duplicated datasets by other groups can help for a better understanding of the mechanisms mediated by acute rejection and thereby increase the therapeutic threatment.
Activation of counter-regulatory mechanisms in a rat renal acute rejection model.
No sample metadata fields
View SamplesFibromyalgia (FM) is a common pain disorder characterized by dysregulation in the processing of pain. Although FM has similarities with other rheumatologic pain disorders, the search for objective markers has not been successful. In the current study we analyzed gene expression in the whole blood of 70 fibromyalgia patients and 70 healthy matched controls. Global molecular profiling revealed an upregulation of several inflammatory molecules in FM patients and downregulation of specific pathways related to hypersensitivity and allergy. There was a differential expression of genes in known pathways for pain processing, such as glutamine/glutamate signaling and axonal development. We also identified a panel of candidate gene expression-based classifiers that could establish an objective blood-based molecular diagnostic to objectively identify FM patients and guide design and testing of new therapies. Ten classifier probesets (CPA3, C11orf83, LOC100131943, RGS17, PARD3B, ANKRD20A9P, TTLL7, C8orf12, KAT2B and RIOK3) provided a diagnostic sensitivity of 95% and a specificity of 96%. Molecular scores developed from these classifiers were able to clearly distinguish FM patients from healthy controls. An understanding of molecular dysregulation in fibromyalgia is in its infancy; however the results described herein indicate blood global gene expression profiling provides many testable hypotheses that deserve further exploration.
Genome-wide expression profiling in the peripheral blood of patients with fibromyalgia.
Specimen part, Disease
View SamplesThere is growing evidence that transplantation of cadaveric human islets is an effective therapy for type 1 diabetes. However, gauging the suitability of islet samples for clinical use remains a challenge. We hypothesized that islet quality is reflected in the expression of specific genes. Therefore, gene expression in 59 human islet preparations was analyzed and correlated with diabetes reversal after transplantation in diabetic mice. Analysis yielded 262 differentially expressed probesets, which together predict islet quality with 83% accuracy. Pathway analysis revealed that failing islet preparations activated inflammatory pathways, while functional islets showed increased regeneration pathway gene expression. Gene expression associated with apoptosis and oxygen consumption showed little overlap with each other or with the 262 probeset classifier, indicating that the three tests are measuring different aspects of islet cell biology. A subset of 36 probesets surpassed the predictive accuracy of the entire set for reversal of diabetes, and was further reduced by logistic regression to sets of 14 and 5 without losing accuracy. These genes were further validated with an independent cohort of 16 samples. We believe this limited number of gene classifiers in combination with other tests may provide complementary verification of islet quality prior to their clinical use.
Gene expression signature predicts human islet integrity and transplant functionality in diabetic mice.
Specimen part
View SamplesCyclosporin A induces expression of proapoptotic factors when cells are challenged by increased tonicity
Cyclosporin-A induced toxicity in rat renal collecting duct cells: interference with enhanced hypertonicity induced apoptosis.
Specimen part, Treatment
View SamplesLongevity mechanisms increase lifespan by counteracting the effects of aging. However, whether longevity mechanisms counteract the effects of aging continually throughout life, or whether they act during specific periods of life, preventing changes that precede mortality is unclear. Here, we uncover transcriptional drift, a phenomenon that describes how aging causes genes within functional groups to change expression in opposing directions. These changes cause a transcriptome-wide loss in mRNA stoichiometry and loss of co-expression patterns in aging animals, as compared to young adults. Using Caenorhabditis elegans as a model, we show that extending lifespan by inhibiting serotonergic signals by the antidepressant mianserin attenuates transcriptional drift, allowing the preservation of a younger transcriptome into an older age. Our data are consistent with a model in which inhibition of serotonergic signals slows age-dependent physiological decline and the associated rise in mortality levels exclusively in young adults, thereby postponing the onset of major mortality. Overall design: In this study set out to measure aging in the transcriptome by determining drift-variance changes with age in C.elegans. We set up three different cohorts of water or mianserin treated animals. The title of each cohort indicates the treatment (e.g. h2o or mia), the concentration (mia2, mia10, mia50), the day when the treatment was started (e.g. d1= day 1 of adulthood) and the day when the sample was collected (e.g. d10= day 10 of adulthood). cohort #1: Celegans was treated with water or mianserin (50uM) on day 1 and RNA was harvested on day1 (water only), d3, d5 and day 10 (file titles: h2o d1/d1, h2o d1/d3, h2o d1/d5, h2o d1/d10, mia50 d1/d3, mia50 d1/d5, mia50 d1/d10) cohort #2: Celegans was treated with mianserin (50uM) starting on day 3, and day 5, RNA was harvested on day 5 or 10 (file titles: mia50 d3/d10, mia50 d5/d10, mia50 d3/d5) cohort #3: Celegans was treated with mianserin 2 uM and 10 uM Mianserin on day 1 and Rna harvested on day 5 (file titles: mia2 d1/d5, mia10 d1/d5)
Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality.
Subject
View SamplesReactivation of latent HCMV is a significant infectious complication of organ transplantation, and current therapies target viral replication once reactivation of transcriptionally silent, latent virus has already occurred. The specific molecular pathways that activate viral gene expression are not well understood. Our studies aim to identify these factors, with the goal of developing novel therapies that prevent transcriptional reactivation in transplant recipients. MCMV is a valuable model for studying latency and reactivation of CMV induced by organ transplantation. We previously demonstrated that transplantation of MCMV-latently infected kidneys into allogeneic recipients induces transcriptional reactivation of immediate early (IE) gene expression within 48 hr.
Transplant-induced reactivation of murine cytomegalovirus immediate early gene expression is associated with recruitment of NF-κB and AP-1 to the major immediate early promoter.
Age, Specimen part
View SamplesInnate immune sensing of influenza A virus (IAV) induces activation of various immune effector mechanisms including the NLRP3 inflammasome and programmed cell death pathways. Although type I IFNs are identified as key mediators of inflammatory and cell death responses during IAV infection, the involvement of various IFN-regulated effectors in facilitating these responses are less studied. Here, we demonstrate the role of interferon regulatory factor 1 (IRF1) in promoting NLRP3 inflammasome activation and cell death during IAV infection. IRF1 functions as a transcriptional regulator of Z-DNA binding protein 1 (ZBP1, also called as DLM1/DAI), a key molecule mediating IAV-induced inflammatory and cell death responses. Therefore, our study identified IRF1 as an upstream regulator of NLRP3 inflammasome and cell death during IAV infection and further highlights the complex and multilayered regulation of key molecules controlling inflammatory response and cell fate decisions during infections.
IRF1 Is a Transcriptional Regulator of ZBP1 Promoting NLRP3 Inflammasome Activation and Cell Death during Influenza Virus Infection.
Specimen part
View Samples