BACKGROUND. Dietary intake of saturated fat is a likely contributor to nonalcoholic fatty liver disease (NAFLD) and insulin resistance, but the mechanisms that initiate these abnormalities in humans remain unclear. We examined the effects of a single oral saturated fat load on insulin sensitivity, hepatic glucose metabolism, and lipid metabolism in humans. Similarly, initiating mechanisms were examined after an equivalent challenge in mice.
Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance.
Sex, Age, Specimen part, Treatment
View SamplesThe introduction of microarray techniques to cancer research brought great expectations for finding biomarkers that would improve patients treatment; however, the results of such studies are poorly reproducible and critical analyses of these methods are rare. In this study, we examined global gene expression in 97 ovarian cancer samples. Also, validation of results by quantitative RT-PCR was performed on 30 additional ovarian cancer samples. We carried out a number of systematic analyses in relation to several defined clinicopathological features. The main goal of our study was to delineate the molecular background of ovarian cancer chemoresistance and find biomarkers suitable for prediction of patients prognosis. We found that histological tumor type was the major source of variability in genes expression, except for serous and undifferentiated tumors that showed nearly identical profiles. Analysis of clinical endpoints [tumor response to chemotherapy, overall survival, disease-free survival (DFS)] brought results that were not confirmed by validation either on the same group or on the independent group of patients. CLASP1 was the only gene that was found to be important for DFS in the independent group, whereas in the preceding experiments it showed associations with other clinical endpoints and with BRCA1 gene mutation; thus, it may be worthy of further testing. Our results confirm that histological tumor type may be a strong confounding factor and we conclude that gene expression studies of ovarian carcinomas should be performed on histologically homogeneous groups. Among the reasons of poor reproducibility of statistical results may be the fact that despite relatively large patients group, in some analyses one has to compare small and unequal classes of samples. In addition, arbitrarily performed division of samples into classes compared may not always reflect their true biological diversity. And finally, we think that clinical endpoints of the tumor probably depend on subtle changes in many and, possibly, alternative molecular pathways, and such changes may be difficult to demonstrate.
Gene expression analysis in ovarian cancer - faults and hints from DNA microarray study.
No sample metadata fields
View SamplesTris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a high-production volume organophosphate flame retardant widely used within the United States. Within zebrafish, initiation of TDCIPP exposure at 0.75 h post-fertilization (hpf) results in genome-wide alterations in methylation during cleavage (2 hpf) as well as epiboly delay or arrest (at higher concentrations) during late-blastula and early-gastrula (4-6 hpf). To determine whether these TDCIPP-induced effects were associated with impacts on the transcriptome, embryos were exposed to vehicle (0.1% DMSO) or 2 M TDCIPP from 0.75 hpf to 6 hpf, and total RNA was extracted from triplicate embryo pools per treatment and hybridized onto duplicate Affymetrix Zebrafish Gene 1.0 ST Arrays per RNA sample. Based on transcriptome-wide profiling, TDCIPP resulted in a significant impact on biological pathways involved in dorsoventral patterning and bone morphogenetic protein (BMP) signaling. Consistent with pathway-level responses, TDCIPP exposure also resulted in strongly dorsalized embryos by 24 hpf a phenotype that mimicked the effects of dorsomorphin, a potent and selective BMP inhibitor. Moreover, the majority of dorsalized embryos were preceded by epiboly arrest at 6 hpf. Our microarray data also revealed that the expression of sizzled (szl) a gene encoding a secreted Frizzled-related protein that limits BMP signaling was significantly decreased by nearly 4-fold at 6 hpf. Therefore, we used a splice-blocking morpholino to test the hypothesis that knockdown of szl phenocopies TDCIPP-induced delays in epiboly progression. Interestingly, contrary to our hypothesis, injection of szl MOs did not affect epiboly progression but, similar to chordin (chd) morphants, resulted in mildly ventralized embryos by 24 hpf. Overall, our findings suggest that TDCIPP-induced epiboly delay may be independent of szl expression and function, and that TDCIPP-induced dorsalization may similar to dorsomorphin be due to interference with BMP signaling during early zebrafish.
Tris(1,3-dichloro-2-propyl) phosphate disrupts dorsoventral patterning in zebrafish embryos.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program.
Specimen part, Treatment
View SamplesSkeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor coactivator 1 (PGC-1), a regulatory nexus in endurance training adaptation. By integrating data on genome-wide binding of PGC-1 and gene expression upon PGC-1 over-expression with comprehensive computational prediction of transcription factor binding sites (TFBSs), we uncover a hitherto underestimated number of transcription factor partners involved in mediating PGC-1 action. In particular, principal component analysis of TFBSs at PGC-1 binding regions predicts that, besides the well-known role of the estrogen-related receptor (ERR), the activator protein-1 complex (AP-1) plays a major role in regulating the PGC-1-controlled gene program of hypoxia response. Our findings thus reveal the complex transcriptional network of muscle cell plasticity controlled by PGC-1.
Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program.
Treatment
View SamplesThe peroxisome proliferator-activated receptor co-activator 1 (PGC-1) coordinates the transcriptional network response to promote an improved endurance capacity in skeletal muscle, e.g. by co-activating the estrogen-related receptor (ERR) in the regulation of oxidative substrate metabolism. Despite a close functional relationship, the interaction between these two proteins has not been studied on a genomic level. We now mapped the genome-wide binding of ERR to DNA in skeletal muscle cell line with elevated PGC-1 and linked the DNA recruitment to global PGC-1 target gene regulation. We found that, surprisingly, ERR co-activation by PGC-1 is only observed in the minority of all PGC-1 recruitment sites. Nevertheless, a majority of PGC-1 target gene expression is dependent on ERR. Intriguingly, the interaction between these two proteins is controlled by the genomic context of response elements, in particular the relative GC and CpG content, monomeric and dimeric repeat binding site configuration for ERR, and adjacent recruitment of the transcription factor SP1. These findings thus not only reveal an unprecedented insight into the regulatory network underlying muscle cell plasticity, but also strongly link the genomic context of DNA response elements to control transcription factor - co-regulator interactions.
The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells.
Specimen part
View SamplesSkeletal muscle tissue shows an extraordinary cellular plasticity, but the underlying molecular mechanisms are still poorly understood. Here we use a combination of experimental and computational approaches to unravel the complex transcriptional network of muscle cell plasticity centered on the peroxisome proliferator-activated receptor coactivator 1 (PGC-1), a regulatory nexus in endurance training adaptation. By integrating data on genome-wide binding of PGC-1 and gene expression upon PGC-1 over-expression with comprehensive computational prediction of transcription factor binding sites (TFBSs), we uncover a hitherto underestimated number of transcription factor partners involved in mediating PGC-1 action. In particular, principal component analysis of TFBSs at PGC-1 binding regions predicts that, besides the well-known role of the estrogen-related receptor (ERR), the activator protein-1 complex (AP-1) plays a major role in regulating the PGC-1-controlled gene program of hypoxia response. Our findings thus reveal the complex transcriptional network of muscle cell plasticity controlled by PGC-1.
Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1α in the regulation of the hypoxic gene program.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells.
Specimen part
View SamplesA tissue like buccal mucosa (from cheek swabs) would be an ideal sample material for rapid, easy collection for testing of biomarkers as an alternative to blood. A limited number of studies, primarily in the smoker/oral cancer literature, address this tissue's efficacy for quantitative PCR or microarray gene expression analysis. In this study both qPCR and microarray analyses were used to evaluate gene expression in buccal cells. An initial study comparing blood and buccal cells from the same individuals looked at relative amounts of four genes. The RNA isolated from buccal cells was degraded but was of sufficient quality to be used with RT-qPCR to detect expression of specific genes. Second, buccal cell RNA was used for microarray-based differential gene expression studies by comparing gene expression between smokers and nonsmokers. The isolation and amplification protocol allowed use of 150-fold less buccal cell RNA than had been reported previously with human microarrays. We report here the finding of a small number of significant gene expression differences between smokers and nonsmokers, using buccal cells as target material. Additionally, Gene Set Enrichment Analysis confirmed that these genes were changing expression in the same pattern as seen in an earlier buccal cell study performed by another group. Our results suggest that in spite of a high degree of RNA degradation, buccal cells from cheek mucosa could be used to detect differential gene expression between smokers and nonsmokers. However the RNA degradation, increase in sample variability and microarray failure rate show that buccal samples should be used with caution as source material in expression studies.
Examining smoking-induced differential gene expression changes in buccal mucosa.
Specimen part
View SamplesGlucocorticoids (GC) and 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3) are steroid hormones with anti-inflammatory properties with enhanced effects when combined. We previously showed that transcriptional response to GCs was correlated with inter-individual and inter-ethnic cellular response. Here, we profiled cellular and transcriptional responses to 1,25(OH)2 D3 from the same donors. We studied cellular response to combined treatment with GCs and 1,25(OH)2 D3 in a subset of individuals least responsive to GCs. We found that combination treatment had significantly greater inhibition of proliferation than with either steroid hormone alone. Overlapping differentially expressed (DE) genes between the two hormones were enriched for adaptive and innate immune processes. Non-overlapping differentially expressed genes with 1,25(OH)2 D3 treatment were enriched for pathways involving the electron transport chain, while with GC treatment, non-overlapping genes were enriched for RNA-related processes. These results suggest that 1,25(OH)2 D3 enhances GC anti-inflammatory properties through a number of shared and non-shared transcriptionally-mediated pathways.
Comparison of cellular and transcriptional responses to 1,25-dihydroxyvitamin d3 and glucocorticoids in peripheral blood mononuclear cells.
Sex, Age, Specimen part, Treatment
View Samples