refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 18 results
Sort by

Filters

Technology

Platform

accession-icon GSE5281
Alzheimer's disease and the normal aged brain (steph-affy-human-433773)
  • organism-icon Homo sapiens
  • sample-icon 157 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Information about the genes that are preferentially expressed during the course of Alzheimers disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects.

Publication Title

Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Race

View Samples
accession-icon GSE4757
Alzheimers disease: neurofibrillary tangles (Rogers-3U24NS043571-01S1)
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Alzheimer's Disease (AD) is a devastating neurodegenerative disorder affecting approximately 4 million people in the U.S. alone. AD is characterized by the presence of senile plaques and neurofibrillary tangles in cortical regions of the brain. These pathological markers are thought to be responsible for the massive cortical neurodegeneration and concomitant loss of memory, reasoning, and often aberrant behaviors that are seen in patients with AD. Understanding the molecular mechanisms whereby these histopathological markers develop will greatly enhance our understanding of AD development and progression. A clearer understanding of the mechanisms underlying neurofibrillary tangle formation specifically may help to clarify the basis for dementia of AD as well as the dementias associated with other diseases that are collectively referred to as "tauopathies."

Publication Title

Gene expression correlates of neurofibrillary tangles in Alzheimer's disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19400
S. aureus gene expression following AFN-1252 treatment
  • organism-icon Staphylococcus aureus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix S. aureus Genome Array (saureus)

Description

AFN-1252 is an inhibitor of fatty acid biosynthesis. Gene expression profiles were generated by microarray analysis of S. aureus cells following treatment with AFN-1252, an inhibitor of fatty acid synthesis.

Publication Title

Perturbation of Staphylococcus aureus gene expression by the enoyl-acyl carrier protein reductase inhibitor AFN-1252.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66949
A YAP/TAZ-Regulated Molecular Signature is Associated with Oral Squamous Cell Carcinoma
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Oral squamous cell carcinoma (OSCC) is a prevalent form of cancer that develops from the epithelium of the oral cavity. OSCC is on the rise worldwide, and death rates associated with the disease are particularly high. Despite progress in understanding of the mutational and expression landscape associated with OSCC, advances in deciphering these alterations for the development of therapeutic strategies have been limited. Further insight into the molecular cues that contribute to OSCC is therefore required. Here we show that the transcriptional regulators YAP (YAP1) and TAZ (WWTR1), which are key effectors of the Hippo pathway, drive pro-tumorigenic signals in OSCC. Regions of pre-malignant oral tissues exhibit aberrant nuclear YAP accumulation, suggesting that dysregulated YAP activity contributes to the onset of OSCC. Supporting this premise, we determined that nuclear YAP and TAZ activity drives OSCC cell proliferation, survival, and migration in vitro, and is required for OSCC tumor growth and metastasis in vivo. Global gene expression profiles associated with YAP and TAZ knockdown revealed changes in the control of gene expression implicated in pro-tumorigenic signaling, including those required for cell cycle progression and survival. Notably, the transcriptional signature regulated by YAP and TAZ significantly correlates with gene expression changes occurring in human OSCCs identified by The Cancer Genome Atlas (TCGA), emphasizing a central role for YAP and TAZ in OSCC biology.

Publication Title

A YAP/TAZ-Regulated Molecular Signature Is Associated with Oral Squamous Cell Carcinoma.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE16624
Expression data from lungs of rats with pulmonary hypertension
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Pulmonary hypertension is a frequent consequence of left heart disease and congestive heart failure (CHF) and causes extensive lung vascular remodelling which leads to right ventricular failure. Functional genomics underlying this structural remodelling are unknown but present potential targets for novel therapeutic strategies. We used microarrays to detail the gene expression underlying vascular remodeling in the pathogenesis of pulmonary hypertension and identified distinct classes of up-regulated genes during this process.

Publication Title

Mast cells promote lung vascular remodelling in pulmonary hypertension.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP104165
Endometrial cell-type specific RNA-seq
  • organism-icon Homo sapiens
  • sample-icon 86 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Cell-type specific RNA-seq is a powerful approach for unravelling molecular processes of endometrial receptivity, and to detect novel sensitive biomarkers of receptivity. Overall design: 16 paired endometrial tissue samples from pre-receptive (defined as LH2) and receptive phase endometria (defined as LH8) from Estonia (defined as E) and Spain (defined as S) were collected. CD9-positive epithelial cells (defined as epithelium) and CD13-positive stromal cells (defined as stroma) were isolated with fluorescent activated cell sorting (FACS) and full transcriptome analysis was performed by RNA-seq.

Publication Title

Meta-signature of human endometrial receptivity: a meta-analysis and validation study of transcriptomic biomarkers.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP097979
Next Generation Sequencing of Gene expression changes in U2OS osteosarcoma cells with PML silencing
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiScanSQ

Description

We used next generation sequencing to analyze the gene expression changes in U2OS osteosarcoma cells expressing shRNA targeting the promyelocytic leukemia (PML) gene transcripts Overall design: cDNA libraries of U2OS cells expressing control shRNA or shRNA targeting PML were generated from one biological replicate

Publication Title

PML nuclear bodies contribute to the basal expression of the mTOR inhibitor DDIT4.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE65069
5Z-7-Oxozeanol inhibits the effect of TGFB1 on human gingival fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Microarray analysis was used to show that in gingival fibroblasts essentially all TGFB1 responsive genes were blocked by TAK inhibition

Publication Title

5Z-7-Oxozeanol Inhibits the Effects of TGFβ1 on Human Gingival Fibroblasts.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE110335
Glycyrrhetinic acid antagonizes pressure-induced venous remodeling in mice
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Development of spider veins is caused by the remodeling of veins located in the upper dermis and promoted by risk factors such as obesity or pregnancy that chronically increase venous pressure. We have repeatedly shown that the pressure-induced increase in biomechanical wall stress is sufficient to evoke the formation of enlarged corkscrew-like superficial veins in mice. Subsequent experimental approaches revealed that interference with endothelial- and/or smooth muscle cell activation counteracts this remodeling process. Here, we investigate whether the herbal agent glycyrrhetinic acid (GA) is a suitable candidate for that purpose given its anti-proliferative as well as anti-oxidative properties.

Publication Title

Glycyrrhetinic Acid Antagonizes Pressure-Induced Venous Remodeling in Mice.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP097752
Intergenerational programming of hepatic xenobiotic response by paternal Nicotine exposure
  • organism-icon Mus musculus
  • sample-icon 240 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Although it is increasingly accepted that some paternal environmental conditions can influence phenotypes in future generations, it generally remains unclear whether the phenotypes induced in offspring represent specific responses to particular aspects of the paternal exposure history, or whether they represent a more generic response to paternal “quality of life”. To establish a paternal effect model based on a known ligand-receptor interaction and thereby enable pharmacological interrogation of the specificity of the offspring response, we explored the effects of paternal nicotine administration on offspring phenotype in mouse. We show that chronic paternal exposure to nicotine prior to reproduction induced a broad protective response to multiple xenobiotics in the next generation. This effect manifested as increased survival following an injection of toxic levels of either nicotine or of cocaine, was specific to male offspring, and was only observed after offspring were first acclimated to sublethal doses of nicotine or cocaine. Mechanistically, the reprogrammed state was characterized by enhanced clearance of nicotine in drug-acclimated animals, accompanied by hepatic upregulation of genes involved in xenobiotic metabolism. Surprisingly, this protective effect could also be induced by paternal exposure to a nicotinic receptor antagonist as well as to nicotine, suggesting that paternal xenobiotic exposure, rather than nicotinic receptor signaling, is likely to be responsible for programming of offspring drug resistance. Taken together, our data show that paternal drug exposure can induce a protective phenotype in offspring by enhancing metabolic tolerance to xenobiotics in the environment. Overall design: Hepatocytes were isolated from 8 week-old male F1 animals from control (TA) and nicotine-exposed (NIC) fathers, and allowed to adhere to the bottom of the well for three hours. Nonadherent cells were then removed, and fresh culture medium was then added. Cells were harvested at different time points in Trizol, and total RNA was extracted. Strand specific libraries were prepared from all samples, and sequenced on Illumina NextSeq500.

Publication Title

Paternal nicotine exposure alters hepatic xenobiotic metabolism in offspring.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact