Resistance to platinum-based chemotherapy is a clinical challenge in the treatment of ovarian cancer (OC) and limits survival. Therefore, innovative drugs against platinum-resistance are urgently needed. Our therapeutic concept is based on the conjugation of two chemotherapeutic compounds to a monotherapeutic pro-drug, which is taken up by cancer cells and cleaved into active cytostatic metabolites. Here, we explore the activity of the duplex-prodrug 5-FdU-ECyd, covalently linking 2''-deoxy-5-fluorouridine (5-FdU) and 3''-C-ethynylcytidine (ECyd), on platinum-resistant OC cells. RNA-Sequencing was used for characterization of 5-FdU-ECyd treated platinum-sensitive A2780 and isogenic platinum-resistant A2780cis. Overall design: Platinum-sensitive A2780 and platinum resistant-cells A2780cis were treated with 5-FdU-Ecyd for 6h and 12h, there are also 6h and 12h untreated controls, all groups are in triplicates
The conjugated antimetabolite 5-FdU-ECyd and its cellular and molecular effects on platinum-sensitive vs. -resistant ovarian cancer cells <i>in vitro</i>.
Cell line, Subject, Time
View SamplesPurpose: Eliciting effective anti-tumor immune responses in patients who fail checkpoint inhibitor therapy is a critical challenge in cancer immunotherapy, and in such patients, tumor-associated myeloid cells and macrophages (TAMs) are promising therapeutic targets. We demonstrate in an autochthonous, poorly immunogenic mouse model of melanoma that combination therapy with an agonistic anti-CD40 mAb and CSF1R inhibitor potently suppressed tumor growth. Microwell assays to measure multiplex protein secretion by single cells identified that untreated tumors have distinct TAM subpopulations secreting MMP9 or co-secreting CCL17/22, characteristic of an M2-like state. Combination therapy reduced the frequency of these subsets, while simultaneously inducing a separate polyfunctional inflammatory TAM subset co-secreting TNF?, IL-6, and IL-12. Tumor suppression by this combined therapy was partially dependent on T cells, TNF? and IFN?. Together, this study demonstrates the potential for targeting TAMs to convert a “cold” into an “inflamed” tumor microenvironment capable of eliciting protective T cell responses. Methods: Total RNA was purified with the use of QIAzol and RNeasy Mini kit (QIAGEN), in which an on-column DNase treatment was included. Purified RNA was submitted to the Yale Center for Genomic Analysis where it was subjected to mRNA isolation and library preparation. Non-strand specific libraries were generated from 50ng total RNA using the SMARTer Ultra Low Input RNA for Illumina Sequencing kit. Libraries were pooled, six samples per lane, and sequenced on an Illumina HiSeq 2500 (75-bp paired end reads), and aligned using STAR to the GRCm38 (mm10) reference genome. A count-based differential expression protocol was adapted for this analysis(Anders et al., 2013); mappable data were counted using HTSeq, and imported into R for differential expression analysis using the DESeq2.To find differentially regulated sets of genes for signature generation, a 1.5-Log2 fold-change difference between samples and p-adjusted (Holm-Sidak) = 0.01 was used. Results: To begin to understand how these treatments modulated T cells to control tumor growth, and to possibly illuminate additional biomarkers of response, we examined the transcriptomes of CD11b+ Ly6G- cells treated with CD40 or CSF1Ri, alone or in combination, relative to control, using high throughput RNA-sequencing. Principal components analysis (PCA) on the genome-wide dataset demonstrated that treating with CD40 and CSF1Ri individually caused largely non-overlapping changes in transcription, as indicated by their movement along orthogonal principal components (PC) relative to the control. Importantly, combination therapy was visualized as a systems-level combination of each individual treatment in PC space. We then examined the mRNAs most altered by either treatment alone or in combination relative to Controls (Log2FC>1.5, p<.01) by unsupervised hierarchical clustering. Five major gene patterns emerged from the clustering of genes. Cluster #1 comprises genes that are upregulated by CD40 and CSF1Ri+CD40 treatment but are mostly unaffected by CSF1Ri, suggesting that CD40 is the primary driver of this cluster in the combination treatment. Notable genes in this cluster include Tnfa, Ifng??Il12b and Cxcl9; interestingly, for Tnfa and Il12b, CSF1Ri+CD40 appears to have a synergistic effect on expression. In contrast to Cluster #1, Cluster #5 contains genes substantially downregulated by CSF1Ri and CSF1Ri+CD40 treatments, but are largely unaffected by CD40, suggesting that CSF1Ri is the driver of this cluster in the combination treatment. Cluster #5 genes include Cd36 and Fabp4, suggesting alterations in lipid homeostasis in the TAMs after treatment. Cluster #2 includes genes that are modestly upregulated by CD40 and CSF1Ri individually, leading to a stronger upregulation when combined. Finally, Clusters #3 and #4 include, for the most part, genes that are differentially affected by CD40 versus CSF1Ri and for which the combination treatment yields an intermediate response. In summary, these data show that CSF1Ri and CD40 agonism elicit predominantly distinct changes in gene expression in the CD11b+ cells, indicating they target different biological processes in myeloid cells. The net result of the changes in myeloid gene expression from the combination of CSF1Ri+CD40 treatment reveal additive effects by the individual treatments, but also synergy in the expression of several pro-inflammatory genes (e.g., Tnfa, Ifng, Il6 and Il12b). We further examined our dataset with Gene Set Enrichment Analysis (GSEA). Although CSF1Ri and CD40 treatments did not closely match any immunological signatures in the immunological database of MSigDb, combined CSF1Ri+CD40 had a strikingly similar signature to myeloid cells exposed to a variety of inflammatory stimulants, most closely reflected by BMDMs treated with lipopolysaccharide (LPS). This motivated us to look specifically at categories of NF-?B target genes that are significantly affected by LPS treatment, including transcription factors, cytokines and chemokines. Indeed, most of these NF-?B target genes associated with inflammation were strongly upregulated by CSF1Ri+CD40 treatment. Finally, Ingenuity Pathway Analysis identified TNFR1 and TNFR2 signaling and Acute phase response signaling among the top genetic signatures produced by the CSF1Ri+CD40 treatment combination, matching what we observed with GSEA. Thus, gene expression analysis not only revealed several biomarkers of response that may be relevant for assessing therapeutic activity in ongoing clinical trials using these drugs, but illuminated lead biological factors that may cause tumor regression. Conclusions: myeloid-targeted immunotherapies anti-CD40+CSF1R inhibition synergistically induce a pro-inflammatory microenviroment Overall design: mRNA profiles of tumor infiltrating lymphocytes (TILs) in mice were generated by deep sequencing, in triplicate, using Illumina.
Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity.
Specimen part, Cell line, Subject
View SamplesWe performed micrarrays to investigate neuronal gene expression changes during acute inflammatory CNS axon injury using the murine myelin oligodendrocyte glycoprotein 35-55 (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE) model. The present study was assigned to assess the direct and indirect endogenous neuronal response to spinal axonal injury in the motor and sensory cortex.
Axonally derived matrilin-2 induces proinflammatory responses that exacerbate autoimmune neuroinflammation.
Sex, Specimen part, Treatment
View SamplesBackground: Moderate hypothermia (32oC for 12 72 hours) has therapeutic applications, but the mechanisms by which it affects cellular function are unclear. We tested the hypothesis that moderate hypothermia produces broad changes in gene expression by human cells at the level of mRNA.
Effect of moderate hypothermia on gene expression by THP-1 cells: a DNA microarray study.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors.
Specimen part
View SamplesWe demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in hiPSC-derived neural progenitor cells (hiPSC-NPC) is sufficient to rapidly generate O4+ oligodendrocytes with an efficiency of 60 to 70% within 28 days.
Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors.
Specimen part
View SamplesHigh environmental temperatures induce detrimental effects on various reproductive processes in cattle. According to the predicted global warming the number of days with unfavorable ambient temperatures will further increase. The objective of this study was to investigate effects of acute heat stress during the late pre-ovulatory phase on morphological, physiological and molecular parameters of dominant follicles in cycling cows during lactation. Eight German Holstein cows in established lactation were exposed to heat stress (28C) or thermoneutral conditions (15C) with pair-feeding for four days. After synchronization growth of dominant follicles was monitored by ultrasonogrphy, and 21 hrs after an induced pre-ovulatory LH surge antral steroid hormones and granulosa cell-specific gene expression profiles were determined. The data showed that the pre-ovulatory growth of dominant follicles and the estradiol, but not the progesterone concentrations tended to be slightly affected. mRNA microarray and hierarchical cluster analysis revealed distinct expression profiles in granulosa cells derived from heat stressed compared to pair-fed animals. Among the 255 affected genes heatstress-, stress- or apoptosis associated genes were not present. But instead, we found up-regulation of genes essentially involved in G-protein coupled signaling pathways, extracellular matrix composition, and several members of the solute carrier family as well as up-regulation of FST encoding follistatin. In summary, the data of the present study show that acute pre-ovulatory heat stress can specifically alter gene expression profiles in granulosa cells, however without inducing stress related genes and pathways and suggestively can impair follicular growth due to affecting the activin-inhibin-follistatin system.
Exposure of Lactating Dairy Cows to Acute Pre-Ovulatory Heat Stress Affects Granulosa Cell-Specific Gene Expression Profiles in Dominant Follicles.
Specimen part
View SamplesActivity-dependent gene expression is central for sculpting neuronal connectivity in the brain. Despite the importance for synaptic plasticity, a comprehensive analysis of the temporal changes in the transcriptomic response to neuronal activity is lacking. In a genome wide survey we identified genes that were induced at 1, 4, 8, or 24 hours following neuronal activity in the hippocampus.
Genome-wide profiling of the activity-dependent hippocampal transcriptome.
Sex, Age, Specimen part, Time
View SamplesGene expression analyis of two hESCs, two human neonatal fibroblasts, and four human iPSCs generated with retroviral transduction using the OSKM cocktail.
Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming.
Specimen part, Cell line
View SamplesEstablishing reliable biomarkers for assessing and validating clinical diagnosis at early prodromal stages of Parkinsons disease is crucial for developing therapies to slow or halt disease progression. Here, we present the largest study to date using whole blood gene expression profiling from over 500 individuals to identify an 87-gene blood-based signature. Our gene signature effectively differentiates between idiopathic PD patients and controls in both a validation cohort and an independent test cohort, and further highlights mitochondrial metabolism and ubiquitination/proteasomal degradation as potential pathways disrupted in Parkinsons disease.
Analysis of blood-based gene expression in idiopathic Parkinson disease.
Sex, Specimen part, Subject
View Samples