Heritable differences in gene expression between individuals are an important source of phenotypic variation. The question of how closely the effects of genetic variation on protein levels mirror those on mRNA levels remains open. Here, we addressed this question by using ribosomal footprinting to examine how genetic differences between two strains of the yeast S. cerevisiae affect translation. Strain differences in translation were observed for hundreds of genes, more than half as many as showed genetic differences in mRNA levels. Similarly, allele specific measurements in the diploid hybrid between the two strains found roughly half as many cis-acting effects on translation as were observed for mRNA levels. In both the parents and the hybrid, strong effects on translation were rare, such that the direction of an mRNA difference was typically reflected in a concordant footprint difference. The relative importance of cis and trans acting variation on footprint levels was similar to that for mRNA levels. Across all expressed genes, there was a tendency for translation to more often reinforce than buffer mRNA differences, resulting in footprint differences with greater magnitudes than the mRNA differences. Finally, we catalogued instances of premature translation termination in the two yeast strains. Overall, genetic variation clearly influences translation, but primarily does so by subtly modulating differences in mRNA levels. Translation does not appear to create strong discrepancies between genetic influences on mRNA and protein levels. Overall design: Ribsosomal footprinting and RNASeq in the two yeast strains BY and RM as well as their diploid hybrid. We generated one library each for the BY and RM parents, and two libraries (biological replicates) for the hybrid data.
Genetic influences on translation in yeast.
Cell line, Subject
View SamplesHomeobox genes of the Hox class are required for proper patterning of skeletal elements and play a role in cartilage differentiation. In transgenic mice with overexpression of Hoxd4 during cartilage development, we observed severe defects, namely physical instability of cartilage, accumulation of immature chondrocytes, and decreased maturation to hypertrophy. To define the molecular basis underlying these defects, we performed gene expression profiling using the Affymetrix microarray platform.
Microarray Analysis of Defective Cartilage in Hoxc8- and Hoxd4-Transgenic Mice.
Specimen part
View SamplesHomeobox genes of the Hox class are required for proper patterning of skeletal elements and play a role in cartilage differentiation. In transgenic mice with overexpression of Hoxc8 during cartilage development, we observed severe defects, namely physical instability of cartilage, accumulation of immature chondrocytes, and decreased maturation to hypertrophy. To define the molecular basis underlying these defects, we performed gene expression profiling using the Affymetrix microarray platform.
Microarray Analysis of Defective Cartilage in Hoxc8- and Hoxd4-Transgenic Mice.
Specimen part
View SamplesBarley cv. Morex inoculated with Fusarium graminearum (isolate Butte 86) or water (mock). Sampled at 24, 48, 72, 96 and 144 hours after treatment. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Jayanand Boddu. The equivalent experiment is BB9 at PLEXdb.]
Transcriptome analysis of the barley-Fusarium graminearum interaction.
Specimen part, Time
View SamplesThree wheat genotypes were exposed to water stress and root tissue collected for expression analysis
Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat.
Specimen part
View SamplesAIMS/HYPOTHESIS: Pregnancies complicated by diabetes have a higher risk of adverse outcomes for mothers and children, including predisposition to disease later in life, such as metabolic syndrome and hypertension. We hypothesized that adverse outcomes from diabetic pregnancies may be linked to compromised placental function. Our goal in this study was to identify cellular and molecular abnormalities in diabetic placenta.
Altered gene expression and spongiotrophoblast differentiation in placenta from a mouse model of diabetes in pregnancy.
Sex, Specimen part
View SamplesInterleukin-1 receptor associated kinase 1 (IRAK1) is an important component of the IL-1R and TLR signaling pathways, which influence Th cell differentiation. Here, we show that IRAK1 promotes Th17 development by mediating IL-1 induced upregulation of IL-23R and subsequent STAT3 phosphorylation, thus enabling sustained IL-17 production. Moreover, we show that IRAK1 signaling fosters Th1 differentiation by mediating T-bet induction and counteracts Treg generation. Cotransfer experiments revealed that Irak1-deficient CD4+ T cells have a cell-intrinsic defect in generating Th1 and Th17 cells under inflammatory conditions in spleen, mesenteric lymph nodes and colon tissue. Furthermore, IRAK1 expression in T cells was shown to be essential for T cell accumulation in the inflamed intestine and mLNs. Transcriptome analysis ex vivo revealed that IRAK1 promotes T cell activation and induction of gut-homing molecules in a cell-intrinsic manner. Accordingly, Irak1-deficient T cells failed to upregulate surface expression of 47 integrin after transfer into Rag1-/- mice and their ability to induce colitis was greatly impaired. Lack of IRAK1 in recipient mice provided additional protection from colitis. Therefore, IRAK1 plays an important role in intestinal inflammation by mediating T cell activation, differentiation and their accumulation in the gut. Thus, IRAK1 is a promising novel target for therapy of inflammatory bowel diseases.
IRAK1 Drives Intestinal Inflammation by Promoting the Generation of Effector Th Cells with Optimal Gut-Homing Capacity.
No sample metadata fields
View SamplesThis study sought to provide a novel ex vivo model for analyzing healing kinetics and gene expression of primary human gingival fibroblasts (hGF) within collagen scaffolds.
Cell population kinetics of collagen scaffolds in ex vivo oral wound repair.
Specimen part
View SamplesMaize is highly sensitive to short term flooding and submergence. We aimed to discover genetic variation for submergence tolerance in maize and elucidate the genetic basis of submergence tolerance through transcriptional profiling of contrasting genotypes. A diverse set of maize nested association mapping (NAM) founder lines were screened, and two highly tolerant (Mo18W and M162W) and sensitive (B97 and B73) genotypes were identified. Transcriptome analysis was performed on these inbreds to provide genome level insights into the molecular responses to submergence. Overall design: RNA deep sequencing of shoot tissue from four inbreds (B73, B97, Mo18W and M162W) in three conditions 24h control (non-submerged), 24h submerged and 72h submerged.
Genetic and molecular characterization of submergence response identifies Subtol6 as a major submergence tolerance locus in maize.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve.
Age, Specimen part, Treatment
View Samples