Epigenetic regulation of key transcriptional programs is a critical mechanism that controls hematopoietic development and thus aberrant expression patterns or mutations in epigenetic regulators occur frequently in hematologic malignancies. We demonstrate that the Polycomb protein L3MBTL1, which is monoallelically deleted in 20q- myeloid malignancies, represses the ability of stem cells to drive hematopoietic-specific transcriptional programs by regulating the expression of SMAD5 and impairing its recruitment to target regulatory regions. Indeed, knock-down of L3MBTL1 promotes the development of hematopoiesis and impairs neural cell fate in human pluripotent stem cells. We also found a role for L3MBTL1 in regulating SMAD5 target gene expression in mature hematopoietic cell populations, thereby affecting erythroid differentiation. Taken together, we have identified epigenetic priming of hematopoietic-specific transcriptional networks, which may assist in the development of therapeutic approaches for patients with anemia.
The polycomb group protein L3MBTL1 represses a SMAD5-mediated hematopoietic transcriptional program in human pluripotent stem cells.
Cell line
View SamplesReprogramming somatic cells to induced pluripotent stem cells (iPSCs) sets their identity back to an embryonic age. This presents a fundamental hurdle for modeling late-onset disorders using iPSC-derived cells. We therefore developed a strategy to induce age-like features in multiple iPSC-derived lineages and tested its impact on modeling Parkinson’s disease (PD). We first describe markers that predict fibroblast donor age and observed the loss of these age-related markers following iPSC induction and re-differentiation into fibroblasts. Remarkably, age-related markers were readily induced in iPSC-derived fibroblasts or neurons following exposure to progerin including dopamine neuron-specific phenotypes such as neuromelanin accumulation. Induced aging in PD-iPSC-derived dopamine neurons revealed disease phenotypes requiring both aging and genetic susceptibility such as frank dendrite degeneration, progressive loss of tyrosine-hydroxylase expression and enlarged mitochondria or Lewy body-precursor inclusions. Our study presents a strategy for inducing age-related cellular properties and enables the modeling of late-onset disease features. Overall design: Induced pluripotent stem cell-derived midbrain dopamine neurons from a young and old donor overexpressing either GFP or Progerin.
Human iPSC-based modeling of late-onset disease via progerin-induced aging.
No sample metadata fields
View SamplesBackground: Strategies to improve long term renal allograft survival have been directed to recipient dependent mechanisms of renal allograft injury. In contrast, no such efforts have been made to optimize organ quality in the donor. In order to get insight into the deleterious gene pathways expressed at different time points during deceased kidney transplantation, transcriptomics was performed on kidney biopsies from a large cohort of deceased kidney transplants.
Hypoxia and Complement-and-Coagulation Pathways in the Deceased Organ Donor as the Major Target for Intervention to Improve Renal Allograft Outcome.
Specimen part
View SamplesThere is an association between transcriptome and the exercise-related phenotype. Peripheral blood cells suffer alterations in the gene expression pattern in response to perturbations caused by exercise. The acute response to endurance activates stress and inflammation, as well as growth and tissue repair responses.
PBMCs express a transcriptome signature predictor of oxygen uptake responsiveness to endurance exercise training in men.
Sex, Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesA limited number of growth factors are capable of regulating numerous developmental processes, but how they accomplish this is unclear. In the gustatory system, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4) have different developmental roles but exert their effects through the same receptors (TrkB and p75).
BDNF and NT4 play interchangeable roles in gustatory development.
Specimen part
View SamplesThe root apex is an important section of the plant root, involved in environmental sensing and cellular development. Analyzing the gene profile of root apex in diverse environments is important and challenging, especially when the samples are limiting and precious, such as in spaceflight. The feasibility of using tiny root sections for transcriptome analysis was examined in this study.To understand the gene expression profiles of the root apex, Arabidopsis thaliana Col-0 roots were sectioned into Zone-I (0.5 mm, root cap and meristematic zone) and Zone-II (1.5 mm, transition, elongation and growth terminating zone). Gene expression was analyzed using microarray and RNA seq.Both the techniques, arrays and RNA-Seq identified 4180 common genes as differentially expressed (with > two-fold changes) between the zones. In addition, 771 unique genes and 19 novel TARs were identified by RNA-Seq as differentially expressed which were not detected in the arrays. Single root tip zones can be used for full transcriptome analysis; further, the root apex zones are functionally very distinct from each other. RNA-Seq provided novel information about the transcripts compared to the arrays. These data will help optimize transcriptome techniques for dealing with small, rare samples. Overall design: Arabidopsis thaliana var. Columbia (COL-0) seedlings were grown on sterile solid media plates containing 0.5 % phytagel. The plates were vertically placed in growth chambers with continuous light (80-100 µmol m -2) at a constant temperature of 19° C. Eight day old seedlings were harvested into RNA-later solution in a 50 mL centrifuge tubes and stored at -20 °C freezer. The root tips were dissected into zone-I: 0.5mm from the tip including the root cap and root division zones, and zone-II: 1.5mm sections including root elongation and root hair zone. Microarray and sequencing experiments were performed.
Comparing RNA-Seq and microarray gene expression data in two zones of the <i>Arabidopsis</i> root apex relevant to spaceflight.
Age, Specimen part, Subject
View SamplesA growing body of evidence suggests that the vasoactive peptides endothelins (ETs) and their receptors (primarily the ETB receptor) are contributors to neurodegeneration in glaucoma. However, ETs actions in retinal ganglion cells (RGCs) are not fully understood. The purpose of this study was to determine ETs effects on gene expression in primary RGCs.
Endothelin-Mediated Changes in Gene Expression in Isolated Purified Rat Retinal Ganglion Cells.
Specimen part
View SamplesGenome-wide transcriptome analysis was carried out in root tissue of Arabidopsis seedlings treated with gold (Au) as Chloroauric acid (HAuCl4). This study demonstrated remarkable changes in root transcriptome within the 12 h exposure. Most of the genes differentially expressed were related to glutathione binding, methylations, secondary metabolism, sugar metabolism, ABA, ethylene, auxin related signalling, transport and signal-transduction pathways.
Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl(-) 4) treatment.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparing RNA-Seq and microarray gene expression data in two zones of the <i>Arabidopsis</i> root apex relevant to spaceflight.
Age, Specimen part
View SamplesGlobal analysis of brassinosteroid (BR)-mediated gene expression under abiotic stress identifies BR associated mechanisms of stress tolerance, and new stress-related genes
Gene expression and functional analyses in brassinosteroid-mediated stress tolerance.
Age, Specimen part
View Samples