Phospholamban R14del mutazion (PLN-R14del) has been identified in a large family pedigree in which heterozygous carriers exhibited inherited dilated cardiomyopathy (DCM) and death by middle age. To better understand the causal link between the mutations in PLN and DCM pathology, we derived induced pluripotent stem cells from a DCM patient carrying the PLN R14del mutation. We showed that iPSC-derived cardiomyocytes recapitulated the DCM-specific phenotype and demonstrated that either TALEN-mediated genetic correction or combinatorial gene therapy resulted in phenotypic rescue. Our findings offer novel insights into the pathogenesis caused by mutant PLN and point to the development of potential new therapeutics of pathogenic genetic variants associated with inherited cardiomyopathies. Overall design: iPSCs were derived from a female patient carrying a heterozygous mutation (R14del) in the PLN gene. Tree samples were analyzed: Cardiomyocytes derived from PLN-R41del iPSC cells (R14del-CM); R14del-CMs infected with AAV6-EGFP-miR-PLN and R14del-CMs infected with AAV6-EGFP-miR-luc used as a negative control
Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy.
No sample metadata fields
View SamplesWe aimed at finding differently expressed genes in whole blood cells of African children with asymptomatic Plasmodium falciparum infection (A), uncomplicated malaria (U), severe malarial anemia (A) and cerebral malaria (Ce) compared one to another and to healthy children (Co).
The blood transcriptome of childhood malaria.
Specimen part
View SamplesObjective: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by a global increasing incidence driven by relapsing-remitting disease in females. p38 MAP kinase (MAPK) has been described as a key regulator of inflammatory responses in autoimmunity, but its role in the sexual dimorphism in MS or MS models remains unexplored. Methods: Toward this end, we used experimental autoimmune encephalomyelitis (EAE), the principal animal model of MS, combined with pharmacologic and genetic inhibition of p38 MAPK activity and transcriptomic analyses. Results: Pharmacologic inhibition of p38 MAPK selectively ameliorated EAE in female mice. Conditional deletion studies demonstrated that p38 signaling in macrophages/myeloid cells, but not T cells or dendritic cells, recapitulated this sexual dimorphism. Analysis of CNS inflammatory infiltrates showed that female, but not male mice lacking p38 in myeloid cells exhibited reduced immune cell activation compared with controls, while peripheral T cell priming was unaffected in both sexes. Transcriptomic analyses of myeloid cells revealed differences in p38-controlled transcripts comprising female- and male-specific gene modules, with greater p38 dependence of pro-inflammatory gene expression in females. Interpretation: Our findings demonstrate a key role for p38 in myeloid cells in CNS autoimmunity and uncover important molecular mechanisms underlying sex differences in disease pathogenesis. Taken together, our results suggest that the p38 MAPK signaling pathway represents a novel target for much needed disease modifying therapies for MS
Sex-specific control of central nervous system autoimmunity by p38 mitogen-activated protein kinase signaling in myeloid cells.
Sex, Specimen part
View SamplesIPH-926 is an anticancer drug-resistant tumor cell line derived from a chemo-refractory human infiltrating lobular breast cancer (ILBC). IPH-926 ILBC cells were subjected to gene expression profiling using an Affymetrix HG U133 Plus 2.0 array.
ABCB1/MDR1 contributes to the anticancer drug-resistant phenotype of IPH-926 human lobular breast cancer cells.
Specimen part, Cell line
View SamplesISWI is an evolutionary conserved ATPase that catalyzes nucleosome remodeling in several different complexes. Two mammalian ISWI orthologs, SNF2H and SNF2L, have specialized functions despite their high similarity. Due to the lack of reagents the functions of SN2L in human cells had not been established. Newly established specific monoclonal antibodies and selective RNA interference protocols now enabled a comprehensive characterization of loss-of-function phenotypes in human cells. Contrasting earlier results obtained in the mouse model, we found SNF2L broadly expressed in primary human tissues. Depletion of SNF2L in HeLa cells led to enhanced proliferation, morphological alterations and increased migration. These phenomena were explained by transcriptome profiling, which identified SNF2L as a modulator of the Wnt signaling network. The cumulative effects of SNF2L depletion on gene expression portray the cell in a state of activated Wnt signaling characterized by increased proliferation and chemotactic locomotion. High levels of SNF2L expression in normal melanocytes contrast to undetectable expression in malignant melanoma. In summary, our data document an anti-correlation between SNF2L expression and several features characteristic of malignant cells.
Nucleosome remodeler SNF2L suppresses cell proliferation and migration and attenuates Wnt signaling.
Cell line
View SamplesThe molecular mechanism underlying cardiac remodeling following myocardial infarction have been incompletely understood. Until now, most studies have been performed in rodents. We studied cardiac remodeling in the physiologically more relevant animal model, the swine.
Left ventricular remodeling in swine after myocardial infarction: a transcriptional genomics approach.
Sex
View SamplesThe genome of Epstein-Barr virus (EBV) encodes 86 proteins but only a limited set is expressed in EBV-growth transformed B cells, termed lymphoblastoid cell lines (LCLs). These cells proliferate via the concerted action of EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), some of which are rate limiting to establish a stable homeostasis of growth promoting and anti-apoptotic activities. We show here that EBV mutants, which lack the EBNA-3A gene, are impaired but can still initiate cell-cycle entry and proliferation of primary human B cells in contrast to an EBNA-2-deficient mutant virus. Surprisingly and in contrast to previous reports, these viral mutants are attenuated in growth transformation assays but give rise to permanently growing EBNA-3A negative B cell lines which exhibit reduced proliferation rates and elevated levels of apoptosis. Expression profiles of EBNA-3A deficient LCLs are characterized by 129 upregulated and 167 downregulated genes, which are significantly enriched for genes involved in apoptotic processes or cell cycle progression like the tumor suppressor gene p16/INK4A or might contribute to essential steps in the viral life cycle. In addition EBNA-3A cellular target genes remarkably overlap with previously identified targets of EBNA-2.
Differential gene expression patterns of EBV infected EBNA-3A positive and negative human B lymphocytes.
Specimen part
View SamplesHuman solid tumors contain rare cancer side population (SP) cells, which expel the fluorescencent dye H33342 and display cancer stem cell characteristics. Transcriptional profiling of cancer SP cells isolated by H33342 fluorescence analysis is a newly emerging approach to discover cancer stem cell markers and aberrant differentiation pathways. Using Affymetrix expression microarrays this study investigated differential gene expression between SP and non-SP (NSP) cells isolated from the CAL-51 human mammary carcinoma cell line.
Down-regulation of the fetal stem cell factor SOX17 by H33342: a mechanism responsible for differential gene expression in breast cancer side population cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease.
Sex, Age, Specimen part
View SamplesConstitutive activation of the Wnt pathway leads to adenoma formation, an obligatory step towards intestinal cancer. In view of the established role of Wnt in regulating stemness, we attempted the isolation of cancer stem cells (CSCs) from Apc- and Apc/KRAS-mutant intestinal tumours. Whereas CSCs are present in malignant Apc/KRASmutant carcinomas, they appear to be very rare (<10-6) in the benign Apcmutant adenomas. In contrast, the Lin-CD24hiCD29+ subpopulation of adenocarcinoma cells appear to be enriched in CSCs with increased levels of active -catenin. Expression profiling analysis of the CSC-enriched subpopulation confirmed their enhanced Wnt activity and revealed additional differential expression of other signalling pathways, growth factor binding proteins, and extracellular matrix components. As expected, genes characteristic of the Paneth cell lineage (e.g. defensins) are co-expressed together with stem cell genes (e.g. Lgr5) within the CSC-enriched subpopulation. This is of interest as it may indicate a cancer stem cell niche role for tumor-derived Paneth-like cells, similar to their role in supporting Lgr5+ stem cells in the normal intestinal crypt. Overall, our results indicate that oncogenic KRAS activation in Apc-driven tumours results in the expansion of the CSCs compartment by increasing b-catenin intracellular stabilization.
Cancer stemness in Apc- vs. Apc/KRAS-driven intestinal tumorigenesis.
Specimen part
View Samples