Regulation of genes in shoots and roots and Arabidopsis in response to Zn-deficiency in wild-type and hma2 hma4 mutants plants
Systemic Upregulation of MTP2- and HMA2-Mediated Zn Partitioning to the Shoot Supplements Local Zn Deficiency Responses.
Age, Specimen part
View SamplesGene copy number variation (CNV) is a form of genetic polymorphism that contributes significantly to genome size and function but remains poorly characterized due to technological limitations. Inter-specific comparisons of CNVs in recently diverged plant species are crucial to uncover selection patterns underlying adaptation of a species to stressful environments. Especially given that gene amplifications have long been implicated in emergence of species-specific traits, we conducted a genome-wide survey to identify species-specific gene copy number expansions and deletions in the model extremophile species - Arabidopsis halleri that has diverged in evolutionarily recent time from Arabidopsis thaliana.
Between-species differences in gene copy number are enriched among functions critical for adaptive evolution in Arabidopsis halleri.
Specimen part
View SamplesMS-275 and hydroxyurea treatment influences whole gene expression including DNA damage response and cell cycle checkpoint signaling.
HDAC1 and HDAC2 integrate checkpoint kinase phosphorylation and cell fate through the phosphatase-2A subunit PR130.
Specimen part, Cell line
View SamplesN-octanoyl dopamine (NOD), but not dopamine dose dependently induces the UPR. This was also found for other synthetic N-Acyl dopamine derivates (NADD). Induction of the UPR was dependent on the redox activity of NADD and was not caused by selective activation of a particular UPR sensor. UPR induction did not result in cell apoptosis, yet NOD strongly impaired cell proliferation by attenuation of cells in the S-G2/M phase. Long-term treatment of HUVEC with low NOD concentration showed decreased intracellular ATP concentration paralleled with activation of AMPK. These cells were significantly more resistant to cold inflicted injury.
N-octanoyl dopamine treatment of endothelial cells induces the unfolded protein response and results in hypometabolism and tolerance to hypothermia.
Cell line, Treatment
View SamplesOverexpression of ecotropic viral integration site 1 (EVI1) is associated with aggressive disease in acute myeloid leukemia (AML). Despite of its clinical importance, little is known about the mechanism through which EVI1 confers resistance to antileukemic drugs. Here, we show that a human myeloid cell line constitutively overexpressing EVI1 after infection with a retroviral vector (U937_EVI1) was partially resistant to etoposide and daunorubicin as compared to empty vector infected control cells (U937_vec). Similarly, inducible expression of EVI1 in HL-60 cells decreased their sensitivity to daunorubicin. Gene expression microarray analyses of U937_EVI1 and U937_vec cells cultured in the absence or presence of etoposide showed that 77 and 419 genes were regulated by EVI1 and etoposide, respectively. Notably, mRNA levels of 26 of these genes were altered by both stimuli, indicating that EVI1 regulated genes were strongly enriched among etoposide regulated genes and vice versa. One of the genes that were induced by both EVI1 and etoposide was CDKN1A/p21/WAF, which in addition to its function as a cell cycle regulator plays an important role in conferring chemotherapy resistance in various tumor types. Indeed, overexpression of CDKN1A in U937 cells mimicked the phenotype of EVI1 overexpression, similarly conferring partial resistance to antileukemic drugs.
EVI1 inhibits apoptosis induced by antileukemic drugs via upregulation of CDKN1A/p21/WAF in human myeloid cells.
Cell line, Treatment
View SamplesMutations in the enzymes IDH1 and IDH2 have been identified in a wide variety of tumors like glioma, chondrosarcoma, thyroid cancer, lymphoma, melanoma, and in acute myeloid leukemia. Mutated IDH1/2 produces the metabolite 2-hydroxyglutarate (2HG), which interferes with epigenetic regulation of gene expression, and thus may promote tumorigenesis.
Pan-mutant-IDH1 inhibitor BAY1436032 is highly effective against human IDH1 mutant acute myeloid leukemia in vivo.
Specimen part, Treatment
View SamplesPolycystic Kidney Disease is characterized by the formation of large fluid-filled cysts that eventually destroy the renal parenchyma leading to end-stage renal failure. Although remarkable progress has been made in understanding the pathologic mechanism of the disease, the precise orchestration of the early events leading to cyst formation is still unclear. Abnormal cellular proliferation was traditionally considered to be one of the primary irregularities leading to cyst initiation and growth. Consequently, many therapeutic interventions have focused on targeting this abnormal proliferation, and some have even progressed to clinical trials. However, the role of proliferation in cyst development was primarily examined at stages where cysts are already visible in the kidneys and therefore at later stages of disease development. In this study we focused on the cystic phenotype since birth in an attempt to clarify the temporal contribution of cellular proliferation in cyst development. Using a PKD2 transgenic rat model (PKD2 (1-703)) of different ages (0-60 days after birth) we performed gene expression profiling and phenotype analysis by measuring various kidney parameters. Phenotype analysis demonstrated that renal cysts appear immediately after birth in the PKD2 transgenic rat model (PKD2 (1-703)). On the other hand, abnormal proliferation occurs at later stages of the disease as identified by gene expression profiling. Interestingly, other pathways appear to be deregulated at early stages of the disease in this PKD model. Our data suggest that cystogenesis precedes deregulation of proliferation-related pathways, suggesting that proliferation abnormalities may contribute in cyst growth rather than cyst formation.
Cyst formation in the PKD2 (1-703) transgenic rat precedes deregulation of proliferation-related pathways.
Sex, Specimen part
View SamplesSmoking is a major risk factor for Urothelial carcinoma (UC). However the complex mechanisms, how smoking promotes carcinogenesis and tumour progression, remain obscure. A microarray based approached was therefore performed to detect the smoking derived gene expression alteration in non-malignant and malignant urothelial tissues from patients with superficial or invasive UC. Smoking enhanced cell migration and response to tissue damages. In non-malignant tissues smoking induced immune response and altered the cytoskeleton. In urothelial carcinoma, smoking altered extracellular and chromosome structures. Smoking affected tissues from patients with invasive carcinomamore strongly, up-regulating particularly growth factors and oncogenes in non-malignant tissue of patients with invasive but not with superficial carcinoma. In former smokers, comparable changes were seen in tissues form patients with invasive disease while they were minor or reversed in tissue of patients with superficial disease. Best but not complete tissue repair was suggestedfor non-malignant tissue from patients with superficial tumours.
New insights into the influence of cigarette smoking on urothelial carcinogenesis: smoking-induced gene expression in tumor-free urothelium might discriminate muscle-invasive from nonmuscle-invasive urothelial bladder cancer.
Specimen part, Disease
View SamplesThe effects of LXR stimulation by GW3965 treatment on global mRNA and miRNA expression in primary human in vitro differentiated adipocytes was investigated using microarray profiling.
LXR is a negative regulator of glucose uptake in human adipocytes.
Sex, Age, Specimen part, Subject
View SamplesGene expression analysis performed on FACS sort purified GC LZ and DZ cells of either high or low affinity to identify unique gene signatures.
Differentiation of germinal center B cells into plasma cells is initiated by high-affinity antigen and completed by Tfh cells.
Sex, Specimen part
View Samples