The concept of tumor stem cells (TSCs) provides a new paradigm for understanding tumor biology, although it remains unclear whether TSCs will prove to be a more robust model than traditional cancer cell lines. We demonstrate marked phenotypic and genotypic differences between primary human tumor-derived TSCs and their matched glioma cell lines. TSCs derived directly from primary glioblastomas harbor extensive similarities to normal NSC and recapitulate the genotype, gene expression patterns and in vivo biology of human glioblastomas. By contrast, the matched, traditionally grown tumor cell lines do not secondary to in vitro genomic alterations. These findings suggest that TSCs may be a more reliable model than many commonly utilized cancer cell lines for understanding the biology of primary human tumors. Analysis of gene expression data is described in Lee et al., Cancer Cell, 2006.
Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines.
No sample metadata fields
View SamplesGliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion.
Identification of molecular pathways facilitating glioma cell invasion in situ.
Specimen part
View SamplesThis is Rembrandt gene expression data (Affymetrix HG-U133Plus2).
Rembrandt: helping personalized medicine become a reality through integrative translational research.
Specimen part, Disease, Disease stage
View SamplesAnalyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.
Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.
No sample metadata fields
View SamplesAnalyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.
Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.
No sample metadata fields
View SamplesAnalyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.
Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.
No sample metadata fields
View SamplesWe developed a computational framework that integrates chromosomal copy number and gene expression data for detecting aberrations that promote cancer progression. We demonstrate the utility of this framework using a melanoma dataset. Our analysis correctly identified known drivers of melanoma and predicted multiple novel tumor dependencies. Two dependencies, TBC1D16 and RAB27A, confirmed empirically, suggest that abnormal regulation of protein trafficking contributes to proliferation in melanoma. Together, these results demonstrate the ability of integrative Bayesian approaches to identify novel candidate drivers with biological, and possibly therapeutic, importance in cancer.
An integrated approach to uncover drivers of cancer.
Cell line
View SamplesmRNA expression data were collected from patients with brain tumor to improve diagnostic of gliomas on molecular level.
Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain.
No sample metadata fields
View SamplesCorticosteroids have been prescribed for decades to modulate inflammation, yet there is a paucity of data on their effects in humans. We examined the changes in cellular and molecular immune system parameters, or immunome, in 20 volunteers at baseline, and after intravenous hydrocortisone (HC) administered at moderate (250 mg) and low (50 mg) doses, to provide insight into how corticosteroids exert their effects.
Effects of Systemically Administered Hydrocortisone on the Human Immunome.
Sex, Age, Specimen part, Race, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Detailed longitudinal sampling of glioma stem cells in situ reveals Chr7 gain and Chr10 loss as repeated events in primary tumor formation and recurrence.
Specimen part, Disease
View Samples