compare the gene expression profile between cep701 treated HEL cells with shPRMT5 knockingdown HEL cells. HEL cells contain homologous alells with mutation Jak2V617F. We found JAK2V617F can inactivate PRMT5 activity by directly phosphorylating PRMT5 through histone methylation.
JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation.
Cell line, Treatment
View SamplesUrothelial carcinoma of the bladder is characterized by significant variability in clinical outcomes depending on stage and grade. The addition of molecular information may improve our understanding of such heterogeneity and enhance prognostic prediction. The purpose of this study was to validate and improve published prognostic signatures for high-risk bladder cancer.
Combination of a novel gene expression signature with a clinical nomogram improves the prediction of survival in high-risk bladder cancer.
Sex
View SamplesWe measured gene expression of D. melanogaster female heads and abdomens after mating with males from six populations evolved under either enforced monogamy (no male-male competition, 3 populations) or sustained polygamy (intense male-male competition, 3 populations). Overall design: Three samples of virgin female heads and six samples of mated female heads (one each per male evolved population, of which there are three monogamous and three polygamous), for nine libraries. Also, three samples of virgin female abdomens and six samples of mated female abdomens (one each per male evolved population, of which there are three monogamous and three polygamous), for nine libraries. In total, eighteen libraries sequenced in 8 lanes.
Sexual conflict drives male manipulation of female postmating responses in <i>Drosophila melanogaster</i>.
Sex, Specimen part, Subject
View SamplesTranscriptional profiling of Murine BaF3 cells infected with MPLW515L grown under either normal conditions (Naive) or in 0.8 uM INCB18424 for 4-6 weeks (Persistent). Naive and Persistent cells were then treated with either DMSO (Control) or 0.8 uM INCB18424 for 4 hours. Goal was to determine transcriptional changes conditioned upon sensitivity/resistance of BaF3 MPLW515L mutants to JAK1/2 specific inhibitor.
Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy.
Disease, Cell line
View SamplesWT mice and Nfkb/p65 S534A were exposed to 1mg/kg LPS and their gene expression measured.
Negative regulation of NF-κB p65 activity by serine 536 phosphorylation.
Sex, Specimen part
View SamplesWT mice and Nfkb/p65 S534A were exposed to 1g/kg LPS and their gene expression measured.
Negative regulation of NF-κB p65 activity by serine 536 phosphorylation.
Sex, Specimen part
View SamplesDietary fatty acids have myriads of effects on human health and disease. Many of these effects are likely achieved by altering expression of genes. Several transcription factors have been shown to be responsive to fatty acids, including SREBP-1c, NF-kB, RXRs, LXRs, FXR, HNF4, and PPARs. However, the relative importance of these transcription factors in regulation of gene expression by dietary fatty acids remains unclear. Here, we take advantage of a unique experimental design using synthetic triglycerides composed of one single fatty acid in combination with gene expression profiling to examine the acute effects of individual dietary fatty acids on hepatic gene expression in mice. The dietary interventions were performed in parallel in wild-type and PPAR-/- mice, enabling the determination of the specific contribution of PPAR. Depending on chain length and degree of saturation, dietary fatty acids caused a statistically significant change in expression of over 400 genes. Surprisingly, the far majority of genes regulated by dietary fatty acids in wild-type mice were unaltered in mice lacking PPAR, indicating PPAR-dependent regulation. We conclude that the effects of dietary fatty acids on hepatic gene expression are almost entirely mediated by PPAR, indicating that PPAR dominates fatty acid-dependent gene regulation in liver.
Effect of synthetic dietary triglycerides: a novel research paradigm for nutrigenomics.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) but not PPARalpha serves as a plasma free fatty acid sensor in liver.
Sex, Specimen part
View SamplesNeuroblastomas are tumors of the developing peripheral sympathetic nervous system, which originates from the neural crest. Twenty percent of neuroblastomas show amplification of the MYCN oncogene, which correlates with poor prognosis. The MYCN transcription factor can activate and repress gene expression. To broaden our insight in the spectrum of genes down-regulated by MYCN, we generated gene expression profiles of the neuroblastoma cell lines SHEP-21N and SKNAS-NmycER, in which MYCN activity can be regulated. In this study, we show that MYCN suppresses the expression of Dickkopf-1 (DKK1) in both cell lines. DKK1 is a potent inhibitor of the wnt/beta-catenin signalling cascade, which is known to function in neural crest cell migration. We generated a DKK1 inducible cell line, IMR32-DKK1, which showed impaired proliferation upon DKK1 expression. Surprisingly, DKK1 expression did not inhibit the canonical wnt/beta-catenin signalling, suggesting a role of DKK1 in an alternative route of the wnt pathway. Gene expression profiling of two IMR32-DKK1 clones showed that only a few genes, amongst which SYNPO2, were up-regulated by DKK1. SYNPO2 encodes an actin-binding protein and was previously found to inhibit proliferation and invasiveness of prostate cancer cells. These results suggest that MYCN might stimulate cell proliferation by inhibiting the expression of DKK1. DKK1 might exert part of its growth suppressive effect by induction of SYNPO2 expression.
Dickkopf-1 is down-regulated by MYCN and inhibits neuroblastoma cell proliferation.
No sample metadata fields
View SamplesThe innate immune system is the organisms first line of defense against pathogens. Pattern recognition receptors (PRRs) are responsible for sensing the presence of pathogen-associated molecules. The prototypic PRRs, the membrane-bound receptors of the Toll-like receptor (TLR) family, recognize pathogen-associated molecular patterns (PAMPs) and initiate an innate immune response through signaling pathways that depend on the adaptor molecules MyD88 and TRIF. Deciphering the differences in the complex signaling events that lead to pathogen recognition and initiation of the correct response remains challenging. Here we report the discovery of temporal changes in the protein signaling components involved in innate immunity. Using an integrated strategy combining unbiased proteomics, transcriptomics and macrophage stimulations with three different PAMPs, we identified differences in signaling between individual TLRs and revealed specifics of pathway regulation at the protein level.
Proteome and Secretome Analysis Reveals Differential Post-transcriptional Regulation of Toll-like Receptor Responses.
Specimen part, Cell line
View Samples