Light has a strong effect on whole organism physiology, such as the circadian rhythms that are phase delayed and advanced by light given at early and late subjective night, respectively. Despite the importance of the phase-dependent light responses, little is known about the underlying molecular mechanism. We performed a comprehensive analysis of genes induced by light in a phase-dependent manner in the chicken pineal gland, an organ that represents a unique vertebrate clock system harboring intrinsic light sensitivity.
Light-dependent and circadian clock-regulated activation of sterol regulatory element-binding protein, X-box-binding protein 1, and heat shock factor pathways.
Sex, Age, Specimen part, Treatment, Time
View SamplesT cell receptor(TCR) engagement in the absence of costimulation leads to a state of T cell tolerance known as anergy. Anergy induction requires new protein synthesis since it is inhibited by cycloheximide.
Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2.
Specimen part, Treatment, Time
View SamplesSKBR3 cells expressing NDRG1 shRNA1 or vector control were harvested by trypsinization and total RNA was extracted. Silencing NDRG1 reduces cell proliferation rates, causing lipid metabolism dysfunction including increased fatty acid incorporation into neutral lipids and lipid droplets.
NDRG1 regulates neutral lipid metabolism in breast cancer cells.
Cell line
View Samples17b-Estradiol added to MEL cells expressing Gata1-ER or PU.1-ER transgenes to stimulate either erythropoietic Gata-1 dependent or myeloid PU.1 dependent gene espression in different time points
PU.1 activation relieves GATA-1-mediated repression of Cebpa and Cbfb during leukemia differentiation.
Disease, Disease stage
View SamplesWe are daily exposed to a multitude of health hazardous airborne particulate matter with notable deposition in the fragile alveolar region of our lungs. Hence, there is a great need for identification and prediction of material-associated diseases, currently hindered due to the lack of in-depth understanding of causal relationships, in particular between acute exposures and chronic symptoms. By applying advanced microscopies and omics to in vitro and in vivo systems, together with in silico molecular modelling, we have here determined that the long-lasting response to a single exposure can originate from the interplay between the newly discovered nanomaterial quarantining and nanomaterial cycling between different lung cell types. This new insight finally allows us to predict the spectrum of lung inflammation associated with materials of interest using only in vitro measurements and in silico modelling potentially relating outcomes to material properties for large number of materials thus boosting safe-by-design-based material development. Because of its profound implications for animal-free predictive toxicology, our work paves the way to a more efficient and hazard-free introduction of numerous new advanced materials into our lives.
Prediction of Chronic Inflammation for Inhaled Particles: the Impact of Material Cycling and Quarantining in the Lung Epithelium.
Cell line
View SamplesA hallmark of adult hematopoiesis is the continuous replacement of blood cells with limited lifespans. While active hematopoietic stem cell (HSC) contribution to multilineage hematopoiesis is the foundation of clinical HSC transplantation, recent reports have questioned the physiological contribution of HSCs to normal/steady-state adult hematopoiesis. Here, we use inducible lineage tracing from genetically marked adult HSCs and reveal robust HSC-derived multilineage hematopoiesis. This commences via defined progenitor cells, but varies substantially in between different hematopoietic lineages. By contrast, adult HSC contribution to hematopoietic cells with proposed fetal origins is neglible. Finally, we establish that the HSC contribution to multilineage hematopoiesis declines with increasing age. Therefore, while HSCs are active contributors to native adult hematopoiesis, it appears that the numerical increase of HSCs is a physiologically relevant compensatory mechanism to account for their reduced differentiation capacity with age Overall design: Lineage tracing from adult/aged HSCs in steady state
Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging.
Age, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Global analysis of the impact of environmental perturbation on cis-regulation of gene expression.
Sex, Specimen part, Time
View SamplesGenetic variants altering cis-regulation of normal gene expression (cis-eQTLs) have been extensively mapped in human cells and tissues, but the extent to which environmental perturbation influences such traits has not been studied to date. We carried out large-scale induction experiments using primary human bone cells derived from 113 unrelated donors of Swedish origin harvested under 18 different conditions (seven treatments, two vehicles, each assessed at two time points). The treatments with the largest impact on the transcriptome, verified on two independent expression arrays, included BMP-2 (t=2h), dexamethasone (DEX) (t=24h), and PGE2 (t=24h). Using these treatments, we performed expression profiling for 18,144 RefSeq transcripts applying biological replicates of the complete study cohort (ntotal=782) and combined it with genome-wide SNP-genotyping data in order to map treatment-specific cis-eQTLs. We found that 93% of cis-eQTLs at 1% FDR were replicated in at least one additional treatment and in fact, on average only 1.4% of the cis-eQTLs were considered as treatment-specific at high confidence. The relative invariability of cis-regulation following perturbation was reiterated independently by genome-wide allelic expression tests where only a small proportion of variance could be attributed to treatment, though treatment-specific cis-regulatory effects were 2-6-fold more abundant among up-or downregulated genes. We further followed-up and validated the DEX-specific cis-regulation of the MYO6 and TNC loci and found top cis-regulatory variants located 180 and 250kb upstream of the transcription start sites, respectively. Our results suggest that, as opposed to tissue-specificity of cis-eQTLs, the interaction between cellular environment and cis-variants are relatively rare (~1.5%), but that detection of such specific interactions can be achieved by combination of functional genomic tools.
Global analysis of the impact of environmental perturbation on cis-regulation of gene expression.
Sex, Specimen part, Time
View SamplesGenetic variants altering cis-regulation of normal gene expression (cis-eQTLs) have been extensively mapped in human cells and tissues, but the extent to which environmental perturbation influences such traits has not been studied to date. We carried out large-scale induction experiments using primary human bone cells derived from 113 unrelated donors of Swedish origin harvested under 18 different conditions (seven treatments, two vehicles, each assessed at two time points). The treatments with the largest impact on the transcriptome, verified on two independent expression arrays, included BMP-2 (t=2h), dexamethasone (DEX) (t=24h), and PGE2 (t=24h). Using these treatments, we performed expression profiling for 18,144 RefSeq transcripts applying biological replicates of the complete study cohort (ntotal=782) and combined it with genome-wide SNP-genotyping data in order to map treatment-specific cis-eQTLs. We found that 93% of cis-eQTLs at 1% FDR were replicated in at least one additional treatment and in fact, on average only 1.4% of the cis-eQTLs were considered as treatment-specific at high confidence. The relative invariability of cis-regulation following perturbation was reiterated independently by genome-wide allelic expression tests where only a small proportion of variance could be attributed to treatment, though treatment-specific cis-regulatory effects were 2-6-fold more abundant among up-or downregulated genes. We further followed-up and validated the DEX-specific cis-regulation of the MYO6 and TNC loci and found top cis-regulatory variants located 180 and 250kb upstream of the transcription start sites, respectively. Our results suggest that, as opposed to tissue-specificity of cis-eQTLs, the interaction between cellular environment and cis-variants are relatively rare (~1.5%), but that detection of such specific interactions can be achieved by combination of functional genomic tools.
Global analysis of the impact of environmental perturbation on cis-regulation of gene expression.
Sex, Specimen part, Time
View SamplesGenetic variants altering cis-regulation of normal gene expression (cis-eQTLs) have been extensively mapped in human cells and tissues, but the extent to which environmental perturbation influences such traits has not been studied to date. We carried out large-scale induction experiments using primary human bone cells derived from 113 unrelated donors of Swedish origin harvested under 18 different conditions (seven treatments, two vehicles, each assessed at two time points). The treatments with the largest impact on the transcriptome, verified on two independent expression arrays, included BMP-2 (t=2h), dexamethasone (DEX) (t=24h), and PGE2 (t=24h). Using these treatments, we performed expression profiling for 18,144 RefSeq transcripts applying biological replicates of the complete study cohort (ntotal=782) and combined it with genome-wide SNP-genotyping data in order to map treatment-specific cis-eQTLs. We found that 93% of cis-eQTLs at 1% FDR were replicated in at least one additional treatment and in fact, on average only 1.4% of the cis-eQTLs were considered as treatment-specific at high confidence. The relative invariability of cis-regulation following perturbation was reiterated independently by genome-wide allelic expression tests where only a small proportion of variance could be attributed to treatment, though treatment-specific cis-regulatory effects were 2-6-fold more abundant among up-or downregulated genes. We further followed-up and validated the DEX-specific cis-regulation of the MYO6 and TNC loci and found top cis-regulatory variants located 180 and 250kb upstream of the transcription start sites, respectively. Our results suggest that, as opposed to tissue-specificity of cis-eQTLs, the interaction between cellular environment and cis-variants are relatively rare (~1.5%), but that detection of such specific interactions can be achieved by combination of functional genomic tools.
Global analysis of the impact of environmental perturbation on cis-regulation of gene expression.
Sex, Specimen part, Time
View Samples