Bergmann glial cells of the vertebrate cerebellum play essential roles in the development and maintenance of cerebellar structure and function. During development, Bergmann glia provide structural support to the expanding cerebellar anlage and also serve as guides for migrating neurons (granule cells). As the cerebellum matures, Bergmann glia become important in dendritic arborization, synapse maintenance and synaptic function. The molecular mechanisms underlying these diverse and important functions of Bergmann glia remain largely unknown.
Identification of novel glial genes by single-cell transcriptional profiling of Bergmann glial cells from mouse cerebellum.
Specimen part
View SamplesKlotho is critical for the survival of triple negative breast cancer (TNBC) cells HCC1395, since its depletion leads to decreased cell viability, cell cycle arrest and apoptosis.
γKlotho is a novel marker and cell survival factor in a subset of triple negative breast cancers.
Specimen part, Cell line
View SamplesEndothelial cell (EC) therapy may promote vascular growth or reendothelization in a variety of disease conditions. However, the production of a cell therapy preparation containing differentiated, dividing cells presenting typical EC phenotype, functional properties and chemokine profile is challenging. We focused on comparative analysis of seven small molecule-mediated differentiation protocols of ECs from human induced pluripotent stem cells. Differentiated cells showed a typical surface antigen pattern of ECs as characterized with flow cytometry analysis, functional properties, such as tube formation and ability to uptake acetylated LDL. Gene expression analysis by RNA sequencing revealed an efficient silencing of pluripotency genes and upregulation of genes related to cellular adhesion during differentiation. In addition, distinct patterns of transcription factor expression were identified during cellular reprogramming providing targets for more effective differentiation protocols in the future. Altogether, our results suggest that the most optimal EC differentiation protocol includes early inhibition of Rho-associated coiled-coil kinase and activation of cyclic adenosine monophosphate signaling, and inhibition of transforming growth factor beta signaling after mesodermal stage. These findings provide the first systematic characterization of the most potent signalling factors and small molecules used to generate ECs from human induced pluripotent stem cells. Consequently, this work improves the existing EC differentiation protocols and opens up new avenues for controlling cell fate for regenerative EC therapy. Overall design: Comparison of the effects of signalling factors and small molecules on endothelial cell differentiation from induced pluripotent stem cells using RNA-Seq. Following small molecules and growth factors were used in different combinations and time courses: 10 uM TGFß-inhibitor SB431542, 10 uM ROCK-inhibitor Y-27632, 20 ng/ml recombinant human BMP-4 and 0,25 mM 8-Br-cAMP. In all groups without TGFß-inhibitor at day 1 in the differentiation, it was added at day 4. In those groups with BMP-4 at day 1, it was removed at day 4. Differentiating ECs were passaged every 4-6 days using Accutase.
Temporal Dynamics of Gene Expression During Endothelial Cell Differentiation From Human iPS Cells: A Comparison Study of Signalling Factors and Small Molecules.
Specimen part, Cell line, Subject
View SamplesThe level of trypsin-2 has been shown to correlate with the malignancy and metastatic potential of many cancer.
Trypsin-2 enhances carcinoma invasion by processing tight junctions and activating ProMT1-MMP.
Specimen part, Cell line
View SamplesTumor-specific alternative splicing is implicated in the progression of cancer, including clear cell renal cell carcinoma (ccRCC). Using ccRCC RNA-sequencing data from The Cancer Genome Atlas, we found that epithelial splicing regulatory protein 2 (ESRP2), one of the key regulators of alternative splicing in epithelial cells, is expressed in ccRCC. ESRP2 mRNA expression did not correlate with the overall survival rate of ccRCC patients, but the expression of some ESRP-target exons correlated with the good prognosis and with the expression of Arkadia (also known as RNF111) in ccRCC. Arkadia physically interacted with ESRP2, induced polyubiquitination, and modulated its splicing function. Arkadia and ESRP2 suppressed ccRCC tumor growth in a coordinated manner. Lower expression of Arkadia correlated with advanced tumor stages and poor outcomes in ccRCC patients. This study thus reveals a novel tumor-suppressive role of the Arkadia-ESRP2 axis in ccRCC. Overall design: Expression of mRNA in a ccRCC cell line OS-RC-2 under the knockdown of Arkadia or ESRP2. Knock-down of ESRP2 was confirmed by RT-PCR because of low expression of ESRP2 which resulted in non-quantitative FPKM value.
The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma.
No sample metadata fields
View SamplesWe evaluated the role of Arkadia and ESRP2 in HEK293T cells Overall design: Expression of mRNA in HEK293T cells under the knockdown of Arkadia or ESRP2
The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma.
No sample metadata fields
View SamplesThis study analysed the transcriptome of mouse Rex1GFPd2 cells before and during early differentiation and further investigated the transcriptomic changes of Nprl2 and Tsc2 knockout. Overall design: RNA samples were collected before differentiation, and on day 1, 2, 3 of differentiation; RNA samples of Rex1GFP positive population were collected for Nprl2, Tsc2 knockout and compared to wild type cells.
Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution.
Specimen part, Cell line, Subject
View SamplesIt has been difficult to elucidate the structure of gene regulatory networks under anticancer drug treatment. Here, we developed an algorithm to highlight the hub genes that play a major role in creating the upstream and downstream relationships within a given set of differentially expressed genes. The directionality of the relationships between genes was defined using information from comprehensive collections of transcriptome profiles after gene knockdown and overexpression. As expected, among the drug-perturbed genes, our algorithm tended to derive plausible hub genes, such as transcription factors. Our validation experiments successfully showed the anticipated activity of certain hub gene in establishing the gene regulatory network that was associated with cell growth inhibition. Notably, giving such top priority to the hub gene was not achieved by ranking fold change in expression and by the conventional gene set enrichment analysis of drug-induced transcriptome data. Thus, our data-driven approach can facilitate to understand drug-induced gene regulatory networks for finding potential functional genes.
InDePTH: detection of hub genes for developing gene expression networks under anticancer drug treatment.
Cell line, Treatment
View SamplesArabidopsis thaliana wild-type and ire1a/ire1b double mutant plants were treated with tunicamycin. RNA was extracted and subjected to microarray analysis.
Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor.
No sample metadata fields
View SamplesWe used microarrays to compare the expression profiles between brains of BCAS1 knockout and wild type mice
Mice lacking BCAS1, a novel myelin-associated protein, display hypomyelination, schizophrenia-like abnormal behaviors, and upregulation of inflammatory genes in the brain.
Sex, Specimen part
View Samples