Preimplantation development is a crucial step for successful implantation and pregnancy. Although both compaction and blastocyst formation have been extensively studied, mechanisms regulating early cell division stages before compaction have remained unclear. Here, we show that ERK MAP kinase function is required for early embryonic cell division and normal cell-cell adhesion before compaction. Our analysis demonstrates that inhibition of ERK activation in the late 2-cell stage embryos leads to a reversible arrest in G2 phase in the 4-cell stage. The G2 arrested, 4-cell stage embryos show weakened cell-cell adhesion as compared to control embryos. Remarkably, microarray analyses show that most of the programmed changes of upregulated and downregulated gene expression during the 4- to 8-cell stages normally proceed in the 4-cell stage-arrested embryos, except for a portion of the genes whose expression profiles closely parallel the stages of embryonic development when arrested in G2 and released to resume development. These parallel genes include the genes encoding intercellular adhesion molecules, whose expression is found to be positively regulated by the ERK pathway. We also show that while ERK inactivation in the 8-cell stage embryos does not lead to cell division arrest, it does cause cell division arrest when cadherin-mediated cell-cell adhesion is disrupted. These results demonstrate an essential role of ERK function in the G2/M transition and the expression of adhesion molecules during the 2-cell to 8-cell stage embryos, and suggest a loose parallelism between the gene expression programs and the developmental stages before compaction.
Requirement for ERK MAP kinase in mouse preimplantation development.
No sample metadata fields
View SamplesSkeletal muscle mass is an important determinant of whole-body glucose disposal. We here show that mice (M-PDK1KO mice) with skeletal muscle–specific deficiency of 3'-phosphoinositide–dependent kinase 1 (PDK1), a key component of the phosphatidylinositol 3-kinase (PI3K) signaling pathway, manifest a reduced skeletal muscle mass under the static condition as well as impairment of exercise load–induced muscle hypertrophy.
Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load.
Sex, Specimen part
View SamplesWe report RNAseq analysis of the transcriptome of retinas from mature rod-specific Dicer1 cKO mice and control littermates lacking Cre expression in order to better understand changes in gene regulation that could lead to retinal degeneration in cKO mice. Overall design: Examine retinal transcriptome of 3 biological replicates for each genotype from 4-week-old animals with tissue collected between 8:00 - 10:00AM
DICER1 is essential for survival of postmitotic rod photoreceptor cells in mice.
No sample metadata fields
View SamplesWe report RNAseq analysis of the transcriptome of retinas from mature rod-specific Dicer1 cKO mice and control littermates lacking Cre expression in order to better understand changes in gene regulation that could lead to retinal degeneration in cKO mice. Overall design: Examine retinal transcriptome of 3 biological replicates for each genotype from 4-week-old animals with tissue collected between 8:00 - 10:00AM
DICER1 is essential for survival of postmitotic rod photoreceptor cells in mice.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling.
Age, Specimen part, Treatment
View SamplesAs sessile organisms plants developed a veriety of adaptive responses to the ever changing environment. One of these responses is the shade avoidance syndrome which is composed of different responses like elongation growth, hyponastic leafs or early flowering to shade (low R/FR). Phytochrcome Interacting Factor 4 and 5 are bHLH transcription factors reported to activate gene expression upon perception of low R/FR. Using this miroarray experiment we identified new genes regulated by PIF4 and PIF5 in response to shade and investigated their genome wide role.
Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling.
Age, Specimen part, Treatment
View SamplesThe interaction between cancer and stroma plays a key role in tumor progression. Inactivation of p53 is often observed in stromal cells surrounding in cancer, suggesting that p53 in fibroblasts is involved in tumor progression.
TSPAN12 is a critical factor for cancer-fibroblast cell contact-mediated cancer invasion.
Sex, Specimen part, Cell line
View SamplesWe used microarrays to assess differences in gene expression associated with single nucleotide polymorphisms occurred in three genes, PMA1, MDS3 and MKT1, as compared to a reference strain devoid of any mutations (Progenitor strain).
Cellular effects and epistasis among three determinants of adaptation in experimental populations of Saccharomyces cerevisiae.
No sample metadata fields
View SamplesWe examined whether SATB1 functions as a global gene regulator in order to maintain the aggressive phenotype of the MDA-MB-231 cell line. We compared the gene expression profiles between control_shRNA-MDA-MB-231 cells, which express SATB1 at high levels, and SATB1_shRNA1-MDA-MB-231 in which the level of SATB1 was greatly downregulated by RNAi technology. This comparative studies were performed using two different platforms (Codelink and Affymetrix genechip) with two culture conditions either on plastic dish (2D) or on matrigel (3D) which allows cells to form a breast-like morphology only for non-aggressive cells.
SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis.
No sample metadata fields
View SamplesIn lung cancer progression, p53 mutations are more often observed in invasive tumors than in non-invasive tumors, suggesting that p53 is involved in tumor invasion and metastasis. To understand the nature of p53 function as a tumor suppressor, it is crucial to elucidate the detailed mechanism of the alteration in epithelial cells, the main origin of solid tumors, following p53 inactivation.
TSPAN2 is involved in cell invasion and motility during lung cancer progression.
Sex, Age, Specimen part, Treatment
View Samples