Prostate cancer is dependent on androgen receptor (AR) signaling at all stages of the disease and cyclin D1 has been shown to negatively modulate the expression of the AR-dependent gene prostate specific antigen (KLK3/PSA).
Cyclin D1 is a selective modifier of androgen-dependent signaling and androgen receptor function.
Cell line, Treatment
View SamplesTCF-1 is an HMG family transcription factor which is known to be critical for T cell development. We discovered that it has a unique role in suppressing malignant transformation of developing thymocytes at early stages. We identified ID2 and LEF-1 as key TCF-1 target genens in tumor suppression.
The TCF-1 and LEF-1 transcription factors have cooperative and opposing roles in T cell development and malignancy.
Specimen part
View SamplesGene expression profiling of three PEL cell lines compare to three Burkitt's lymphoma lines to figure out the changed genes under KSHV latent infection.
The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus modulates cellular gene expression and protects lymphoid cells from p16 INK4A-induced cell cycle arrest.
No sample metadata fields
View SamplesThe Long Evans/orl (LE/orl) rat is an animal model of inherited undescended testis (UDT). To explore genetic mechanisms of UDT, we studied differential gene expression in LE/orl and LE wild type (LE/wt) fetal gubernaculum and testis.
Altered expression of muscle- and cytoskeleton-related genes in a rat strain with inherited cryptorchidism.
Sex, Specimen part
View SamplesDuctal carcinoma in situ (DCIS) is a precursor lesion that can give rise to invasive breast cancer (IBC). It has been proposed that both the nature of the lesion and the tumor microenvironment play key roles in progression to IBC. Here, laser capture microdissected tissue samples from epithelium and stroma in normal breast, pure DCIS, and pure IBC were employed to define key gene expression profiles associated with disease progression.
Progression of ductal carcinoma in situ to invasive breast cancer is associated with gene expression programs of EMT and myoepithelia.
Specimen part, Subject
View SamplesBackground: Extended hepatectomies may result in post-hepatectomy liver failure, a condition with a high mortality. The main purpose of the present study was to investigate and compare the gene expression profiles in rats subjected to increasing size of partial hepatectomy.
Gene Expression in the Liver Remnant Is Significantly Affected by the Size of Partial Hepatectomy: An Experimental Rat Study.
Specimen part, Treatment
View SamplesBreast cancer is a highly heterogeneous disease that is categorized into distinct tumor subtypes based on specific molecular attributes, which ultimately influence therapeutic options. Unlike ER+ and/or HER2+ cancers that are subject to specific targeted therapies, triple negative breast cancers (TNBCs) do not express these receptors, which leaves patients with limited treatment options. Thus, significant focus has been placed on identifying molecular attributes of basal-like disease that could be used to develop and/or direct novel treatment regimens. Activation of MYC signaling and inactivation of the RB-pathway are frequent events in many types of human cancers. These pathways influence many biological processes, such as cell proliferation, that contribute to the aggressiveness and therapeutic response of tumors. The current study examines the interaction of the MYC and RB pathways in mammary epithelial cell tumorigenesis.
RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer.
Sex, Age, Specimen part
View SamplesMouse ESCs depleted of the epigenetic modifying enzyme Usp22 fail to differentiate properly. Ectopic expresison of Usp22 results in spontaneous differnetiation.
The epigenetic modifier ubiquitin-specific protease 22 (USP22) regulates embryonic stem cell differentiation via transcriptional repression of sex-determining region Y-box 2 (SOX2).
Cell line, Treatment
View SamplesHematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain homeostasis. With aging, the frequency of polar HSCs decreases. Cell polarity in HSCs is controlled by the activity of the small RhoGTPase Cdc42. Here we demonstrate, using a comprehensive set of paired daughter cell analyses that include single cell 3D-confocal imaging, single cell transplants, single cell RNA-seq as well as single cell ATAC-seq, that the outcome of HSC divisions is strongly linked to the polarity status before mitosis, which is in turn determined by the level of the activity Cdc42 in stem cells. Aged apolar HSCs undergo preferentially self-renewing symmetric divisions, resulting in daughter stem cells with reduced regenerative capacity and lymphoid potential, while young polar HSCs undergo preferentially asymmetric divisions. Mathematical modeling in combination with experimental data implies a mechanistic role of the asymmetric sorting of Cdc42 in determining the potential of daughter cells via epigenetic mechanisms. Therefore, molecules that control HSC polarity might serve as modulators of the mode of stem cell division regulating the potential of daughter cells. Overall design: Sorted single cells were cultured with and without treatment in the presence of cytokines until first cell division (40-44hrs). The daughter cells were manually separated, washed with PBS and collected for RNA sequencing.
Aging alters the epigenetic asymmetry of HSC division.
Specimen part, Cell line, Treatment, Subject
View SamplesIschemia/reperfusion injuries is a known complication to hepatic surgery. Ischemic pre- (IPC) and postconditioning (IPO) protects the liver against ischemia/reperfusion-injuries. Expression profiling were performed on liver biopsies seeking to identify molecular mediators of the protective properties.
Ischemic pre- and postconditioning has pronounced effects on gene expression profiles in the rat liver after ischemia/reperfusion.
Sex
View Samples