Pioneer transcription factors are able to recognise and bind their motif sequences in inaccessible or closed chromatin, and their ability to achieve this is required to establish new regulatory elements and transcriptional networks during development and cellular reprogramming. An essential feature of this pioneering activity is the transition from inaccessible chromatin to a nucleosome-depleted and accessible chromatin state typical of normal regulatory elements, and this is believed to facilitate further transcription factor binding events. However, the mechanisms by which many pioneer transcription factors achieve this remarkable feat remain elusive. Here we reveal that the pluripotency-associated pioneer factor OCT4 binds inaccessible chromatin to shape the chromatin accessibility, transcription factor co-binding and regulatory potential of thousands of distal regulatory elements in mouse embryonic stem cells, demonstrating that its pioneering activity is a feature of normal pluripotency, and not just reprogramming. The accessible chromatin formed at OCT4 binding sites relies on the chromatin remodelling factor BRG1, which is recruited to these sites by OCT4. The occupancy of BRG1 is then required to support OCT4/SOX2 co-binding and normal expression of the pluripotency-associated transcriptome, and this reliance on BRG1 reflects OCT4 binding dynamics during cellular reprograming and early mouse development. Together these observations reveal a distinct requirement for the chromatin remodelling factor BRG1 in shaping the pioneering activity of OCT4 and regulating the pluripotency network in embryonic stem cells. Overall design: ZHBTC4 and Brg1fl/fl mouse embryonic stem cells were used to ablate OCT4 and BRG1 expression respectively, followed by ATAC-seq, ChIP-seq or RNA-seq to examine their contribution towards chromatin accessibility, transcription factor occupancy, and gene expression.
The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells.
Cell line, Treatment, Subject
View SamplesEmbryonic mouse brain development involves a sequential differentiation of multipotent progenitor cells into neurons and glia. Using microarrays and large 2-D electrophoresis, we investigated the transcriptome and proteome of mouse brains at embryonic days 9.5, 11.5 and 13.5. During this developmental period, neural progenitor cells shift from proliferation to neuronal differentiation. As expected, we detected numerous expression changes between the time points investigated but interestingly, the rate of alteration was about 10% to 13% of all proteins and mRNAs during every two days of development. Furthermore, up- and downregulation was balanced. This was confirmed for two additional stages of development, embryonic day 16 and 18. We hypothesize that during embryonic development, the rate of protein expression alteration is rather constant due to a limitation of cellular resources such as energy, space and free water. The similar complexity found at the transcriptome and proteome level at all stages suggests, that changes in relative concentration of gene products rather than an increased number of gene products dominate throughout cellular differentiation. We found that metabolism and cell cycle related gene products were downregulated in expression when precursor cells switched from proliferation to neuronal differentiation (day 9.5 to 11.5), whereas neuron specific gene products were upregulated. A detailed analysis revealed their implication in differentiation related processes such as rearrangement of the actin cytoskeleton as well as Notch and Wnt signaling pathways.
Transcriptome and proteome analysis of early embryonic mouse brain development.
No sample metadata fields
View SamplesThe roles of histone demethylase RBP2 in gene expression were assessed using gene expression profiling experiments with wild type and RBP2-/- primary MEFs. Several cytokine genes including SDF1 and Kit ligand were upregulated upon inactivation of RBP2.
The retinoblastoma binding protein RBP2 is an H3K4 demethylase.
No sample metadata fields
View SamplesIn order to identify the effects of the induction of the gene of interest on the mouse ES transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the different inducible cell lines
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Cell line
View SamplesIn order to identify the effects of the induction of the gene of interest on the mouse ES transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the inducible not-tagged cell line.
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Cell line
View SamplesIn order to identify the effects of the knock-down of the gene of interest on the mouse ES transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the knock-down cell line.
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Cell line
View SamplesRNA sequencing of ILC2s sorted from ß2 adrenergic receptor agonist-treated and non-treated mice Overall design: RNAs of ILC2s sorted as KLRG1+CD127+CD90+Lin-CD45+ from ß2 adrenergic receptor agonist-treated and non-treated mice mLNs 4 days post N. brasiliensis infection were analyzed
β<sub>2</sub>-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses.
Specimen part, Cell line, Treatment, Subject
View SamplesThe HSA21-mES Cell Bank includes, in triplicate clones, thirty-two murine orthologs of HSA21 genes, which can be overexpressed in an inducible manner using the Tet-off system integrated in the Rosa26 locus.
A mouse embryonic stem cell bank for inducible overexpression of human chromosome 21 genes.
Specimen part
View SamplesHematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain homeostasis. With aging, the frequency of polar HSCs decreases. Cell polarity in HSCs is controlled by the activity of the small RhoGTPase Cdc42. Here we demonstrate, using a comprehensive set of paired daughter cell analyses that include single cell 3D-confocal imaging, single cell transplants, single cell RNA-seq as well as single cell ATAC-seq, that the outcome of HSC divisions is strongly linked to the polarity status before mitosis, which is in turn determined by the level of the activity Cdc42 in stem cells. Aged apolar HSCs undergo preferentially self-renewing symmetric divisions, resulting in daughter stem cells with reduced regenerative capacity and lymphoid potential, while young polar HSCs undergo preferentially asymmetric divisions. Mathematical modeling in combination with experimental data implies a mechanistic role of the asymmetric sorting of Cdc42 in determining the potential of daughter cells via epigenetic mechanisms. Therefore, molecules that control HSC polarity might serve as modulators of the mode of stem cell division regulating the potential of daughter cells. Overall design: Sorted single cells were cultured with and without treatment in the presence of cytokines until first cell division (40-44hrs). The daughter cells were manually separated, washed with PBS and collected for RNA sequencing.
Aging alters the epigenetic asymmetry of HSC division.
Specimen part, Cell line, Treatment, Subject
View Samples