This SuperSeries is composed of the SubSeries listed below.
Gene expression profiling reveals aryl hydrocarbon receptor as a possible target for photobiomodulation when using blue light.
No sample metadata fields
View SamplesPhotobiomodulation (PBM) with blue light induces a biphasic dose response curve in proliferation of immortalized human keratinocytes (HaCaT), with a maximum anti-proliferative effect reached with 30min (41.4J/cm). The aim of this study was to test the photobiomodulatory effect of 41.4J/cm2 blue light irradiation on ROS production, apoptosis and gene expression at different time points after irradiation of HaCaT cells in vitro. ROS concentration was increased 30min after irradiation. However, already 1h after irradiation, cells were able to reduce ROS and balance the concentration to a normal level. The sudden increase in ROS did not damage the cells, which was demonstrated with FACS analysis where HaCaT cells did not show any sign of apoptosis after blue light irradiation. Furthermore, a time course could be seen in gene expression analysis after blue light, with an early response of stimulated genes already 1h after blue light irradiation, leading to the discovery of the aryl hydrocarbon receptor as possible target for blue light irradiation.
Gene expression profiling reveals aryl hydrocarbon receptor as a possible target for photobiomodulation when using blue light.
No sample metadata fields
View SamplesPhotobiomodulation (PBM) with blue light induces a biphasic dose response curve in proliferation of immortalized human keratinocytes (HaCaT), with a maximum anti-proliferative effect reached with 30min (41.4J/cm). The aim of this study was to test the photobiomodulatory effect of 41.4J/cm2 blue light irradiation on ROS production, apoptosis and gene expression at different time points after irradiation of HaCaT cells in vitro. ROS concentration was increased 30min after irradiation. However, already 1h after irradiation, cells were able to reduce ROS and balance the concentration to a normal level. The sudden increase in ROS did not damage the cells, which was demonstrated with FACS analysis where HaCaT cells did not show any sign of apoptosis after blue light irradiation. Furthermore, a time course could be seen in gene expression analysis after blue light, with an early response of stimulated genes already 1h after blue light irradiation, leading to the discovery of the aryl hydrocarbon receptor as possible target for blue light irradiation.
Gene expression profiling reveals aryl hydrocarbon receptor as a possible target for photobiomodulation when using blue light.
No sample metadata fields
View SamplesPhotobiomodulation (PBM) with blue light induces a biphasic dose response curve in proliferation of immortalized human keratinocytes (HaCaT), with a maximum anti-proliferative effect reached with 30min (41.4J/cm). The aim of this study was to test the photobiomodulatory effect of 41.4J/cm2 blue light irradiation on ROS production, apoptosis and gene expression at different time points after irradiation of HaCaT cells in vitro. ROS concentration was increased 30min after irradiation. However, already 1h after irradiation, cells were able to reduce ROS and balance the concentration to a normal level. The sudden increase in ROS did not damage the cells, which was demonstrated with FACS analysis where HaCaT cells did not show any sign of apoptosis after blue light irradiation. Furthermore, a time course could be seen in gene expression analysis after blue light, with an early response of stimulated genes already 1h after blue light irradiation, leading to the discovery of the aryl hydrocarbon receptor as possible target for blue light irradiation.
Gene expression profiling reveals aryl hydrocarbon receptor as a possible target for photobiomodulation when using blue light.
No sample metadata fields
View SamplesAll mRNA was isolated after 8 hours of culture time in each of three culture conditions. (1) TCPS Plate, (2) Collagen-GAG 2 dimensional coated plate and (3) collagen-GAG three dimensional mesh.
Fibroblast remodeling activity at two- and three-dimensional collagen-glycosaminoglycan interfaces.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Molecular classification of mature aggressive B-cell lymphoma using digital multiplexed gene expression on formalin-fixed paraffin-embedded biopsy specimens.
Sex, Age, Specimen part, Disease
View SamplesThe most frequent mature aggressive B-cell lymphomas are diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL). Patients suffering from molecularly defined BL (mBL) but treated with a regimen developed for DLBCL show an unfavorable outcome compared to mBL treated with chemotherapy regimens for BL. Distinguishing BL from DLBCL by conventional histopathology is challenging in lymphomas that have features common to both diseases (aggressive B-cell lymphoma unclassifiable with features of DLBCL and BL [intermediates]). Moreover, DLBCL are a heterogeneous group of lymphomas comprising distinct molecular subtypes: the activated B-cell (ABC)-like, the germinal center B-cell-like (GCB) and the unclassifyable subtype as defined by gene expression profiling (GEP). Attempts to replace GEP with techniques applicable to formalin-fixed paraffin-embedded (FFPE) tissue led to algorithms for immunohistochemical stainings (IHS). Disappointingly, the algorithms yielded conflicting results with respect to their prognostic potential, raising concerns about their validity. Furthermore, IHS algorithms did not provide a fully resolved classification: They did not identify mBL; nor did they separate ABC from unclassified DLBCL.
Molecular classification of mature aggressive B-cell lymphoma using digital multiplexed gene expression on formalin-fixed paraffin-embedded biopsy specimens.
Sex, Age, Specimen part
View SamplesAbstract.
The IKK2/NF-{kappa}B pathway suppresses MYC-induced lymphomagenesis.
Specimen part
View SamplesThe SV40 large (LT) and small (st) antigens are produced from a single alternatively spliced pre-mRNA, that when co-expressed, transform a variety of cells in vitro and in vivo. However, 17kT, a relatively uncharacterized third protein that is co-linear with LT for the first 131 amino acids, is also produced from the early viral pre-mRNA by removal of an additional intron from the LT transcript. Here we report a line of transgenic mice expressing a liver-specific dox-inducible viral transcript that fails to yield any detectable LT protein, yet produces abundant 17kT. Comparative analysis of livers of transgenic mice expressing either 17kT or LT demonstrates that while 17kT is a potent stimulator of cell proliferation, it is ineffective at inducing liver tumor development, due in part, to the failure of 17kT to effectively induce the expression of growth regulators and reactivate expression of imprinted and developmentally regulated hepatic genes. These studies highlight key functional differences between LT and 17kT in their ability to transform quiescent primary epithelial cells in vivo, and demonstrate how specific functional domains within LT impact cell-specific gene expression to promote oncogenesis.
Comparative analysis of SV40 17kT and LT function in vivo demonstrates that LT's C-terminus re-programs hepatic gene expression and is necessary for tumorigenesis in the liver.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MYC stimulates EZH2 expression by repression of its negative regulator miR-26a.
Specimen part
View Samples