This SuperSeries is composed of the SubSeries listed below.
REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis.
Cell line, Treatment
View SamplesGATA6 is a zinc finger transcription factor that is required for the proliferation, development and specific gene regulation in the gastrointestinal tract. We have recently reported that GATA6-mediated induction of the intestinal stem cell marker LGR5 is required for the tumorigenicity of colon cancer cells. However, knockdown of LGR5, unlike GATA6, does not affect the proliferation of these cells under adherent conditions. Here we show that REG4, a member of the regenerating islet-derived (REG) family, is a target of GATA6. We further demonstrate that REG4 is downregulated by overexpression of miR-363, which suppresses GATA6 expression. Moreover, we show that GATA6-mediated activation of REG4 causes an acceleration of the growth of colon cancer cells under adherent conditions. These results suggest that GATA6 simultaneously activates the transcription of genes required for growth (REG4) and clonogenicity (LGR5), and the miR-363-GATA6-REG4/LGR5 pathway is critical for colorectal tumorigenesis.
REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis.
Cell line, Treatment
View SamplesGATA6 is a zinc finger transcription factor that is required for the proliferation, development and specific gene regulation in the gastrointestinal tract. We have recently reported that GATA6-mediated induction of the intestinal stem cell marker LGR5 is required for the tumorigenicity of colon cancer cells. However, knockdown of LGR5, unlike GATA6, does not affect the proliferation of these cells under adherent conditions. Here we show that REG4, a member of the regenerating islet-derived (REG) family, is a target of GATA6. We further demonstrate that REG4 is downregulated by overexpression of miR-363, which suppresses GATA6 expression. Moreover, we show that GATA6-mediated activation of REG4 causes an acceleration of the growth of colon cancer cells under adherent conditions. These results suggest that GATA6 simultaneously activates the transcription of genes required for growth (REG4) and clonogenicity (LGR5), and the miR-363-GATA6-REG4/LGR5 pathway is critical for colorectal tumorigenesis.
REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis.
Cell line, Treatment
View SamplesVa24 invariant natural killer T (iNKT) cells are a subset of T lymphocytes implicated in the regulation of broad immune responses. They recognize lipid antigens presented by CD1d on antigen-presenting cells and induce both innate and adaptive immune responses, which enhance effective immunity against cancer, represent promising therapeutic target. However, reduced iNKT-cell numbers and function have been observed in many patients with cancer. To overcome this obstacle, we reprogramed human iNKT cells to pluripotency and then redifferentiated into regenerated iNKT cells in vitro through IL-7/IL-15-based optimized cytokine combination. They showed proliferation and IFN-? production in response to a-galactosylceramide, induced dendritic cell maturation and downstream activation of cancer antigen-specific cytotoxic T lymphocytes in vitro, and exhibited NKG2D- and DNAM-1-mediated natural killer celllike cytotoxicity against cancer cell lines. Their immunological features and availability in an unlimited supply from induced pluripotent stem cells offer the potential to develop effective immunotherapies against cancer. Overall design: Expression profile of the lymphocytes (n = 17) by highthrouput sequencing
Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated Vα24 Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells.
No sample metadata fields
View SamplesNIH3T3 in the middle of G0 to G1 transion consists of the cells which is still staying G0 phase and the cells which enters G1. Monitoring the expressions of p27 and Cdt1 enables to distinguish these two; p27+/Cdt1+ cells as the cells in G0 phase and p27-Cdt1+ cells as G1 phase
A novel cell-cycle-indicator, mVenus-p27K-, identifies quiescent cells and visualizes G0-G1 transition.
Cell line
View SamplesGene expression profiles of Cbfb-deficient and control Treg cells were compared.
Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells.
Sex, Age, Specimen part
View SamplesHigh levels of Hes1 expression are frequently found in BCR-ABL-positive chronic myelogenous leukemia in blast crisis (CML-BC). In mouse bone marrow transplantation (BMT) models, co-expression of BCR-ABL and Hes1 induces CML-BClike disease; however the underlying mechanism remained elusive. Here, based on gene expression analysis, we show that MMP-9 is upregulated by Hes1 in common myeloid progenitors (CMPs). Analysis of promoter activity demonstrated that Hes1 upregulated MMP-9 by activating NF-kB. Analysis of 20 samples from CML-BC patients showed that MMP-9 was highly expressed in three, with two exhibiting high levels of Hes1 expression. Interestingly, MMP-9 deficiency impaired the cobblestone area-forming ability of CMPs expressing BCR-ABL and Hes1 that were in conjunction with a stromal cell layer. In addition, these CMPs secreted MMP-9, promoting the release of soluble Kit-ligand (sKitL) from stromal cells, thereby enhancing proliferation of the leukemic cells. In accordance, mice transplanted with CMPs expressing BCR-ABL and Hes1 exhibited high levels of sKitL as well as MMP-9 in the serum. Importantly, MMP-9 deficiency impaired the development of CML-BClike disease induced by BCR-ABL and Hes1 in mouse BMT models. The present results suggest that Hes1 promotes the development of CML-BC, partly through MMP-9 upregulation in leukemic cells.
Hes1 promotes blast crisis in chronic myelogenous leukemia through MMP-9 upregulation in leukemic cells.
Specimen part
View SamplesRearrangements involving the NUP98 gene resulting in fusions to several partner genes occur in acute myeloid leukemia and myelodysplastic syndromes. This study demonstrates that the second FG repeat domain of the NUP98 moiety of the NUP98-HOXA9 fusion protein is important for its cell immortalization and leukemogenesis activities. We demonstrate that NUP98-HOXA9 interacts with MLL via this FG repeat domain and that, in the absence of MLL, NUP98-HOXA9-induced cell immortalization and leukemogenesis are severely inhibited. Molecular analyses indicate that MLL is important for the recruitment of NUP98-HOXA9 to the HOXA locus and for NUP98-HOXA9-induced HOXA gene expression. Our data indicate that MLL is crucial for NUP98-HOXA9 leukemia initiation.
MLL is essential for NUP98-HOXA9-induced leukemia.
No sample metadata fields
View SamplesRecurrent mutations in ASXL1 are found in various hematological malignancies and are associated with poor prognosis. In particular, ASXL1 mutations are frequently found in patients with hematological malignancies associated with myelodysplasia including myelodysplastic syndromes (MDS), and chronic myelomonocytic leukemia. Although loss-of-function ASXL1 mutations promote myeloid transformation, a large subset of ASXL1 mutations is thought to result in stable truncation of ASXL1. Here we demonstrate that C-terminal truncating ASXL1 mutations (ASXL1-MT) inhibit myeloid differentiation and induce MDS-like disease in mice, displaying all the features of human MDS including multi-lineage myelodysplasia, pancytopenia and occasional progression to overt leukemia. Concerning the molecular mechanisms, ASXL1-MT derepressed expression of Hoxa9 and miR-125a through inhibiting PRC2-mediated methylation of H3K27. miR-125a targeted expression of a surface receptor Clec5a, which was found to supports for myeloid differentiation. In addition, HOXA9 expression was high in MDS patients with ASXL1 mutations while Clec5a expression was generally low in MDS patients. Thus, ASXL1-MT induced MDS-like disease in mice via derepression of Hoxa9 and miR-125a, and Clec5a downregulation. Our data provide evidence for a novel axis of MDS pathogenesis (ASXL1 mutations-upregulation of HoxA9 and miR-125a-downregulation of Clec5a) and implicate both ASXL1 mutants and miR-125a as therapeutic targets in MDS.
Myelodysplastic syndromes are induced by histone methylation–altering ASXL1 mutations.
Cell line, Treatment
View SamplesRecurrent mutations in ASXL1 are found in various hematological malignancies and are associated with poor prognosis. In particular, ASXL1 mutations are frequently found in patients with hematological malignancies associated with myelodysplasia including myelodysplastic syndromes (MDS), and chronic myelomonocytic leukemia. Although loss-of-function ASXL1 mutations promote myeloid transformation, a large subset of ASXL1 mutations is thought to result in stable truncation of ASXL1. Here we demonstrate that C-terminal truncating ASXL1 mutations (ASXL1-MT) inhibit myeloid differentiation and induce MDS-like disease in mice, displaying all the features of human MDS including multi-lineage myelodysplasia, pancytopenia and occasional progression to overt leukemia. Concerning the molecular mechanisms, ASXL1-MT derepressed expression of Hoxa9 and miR-125a through inhibiting PRC2-mediated methylation of H3K27. miR-125a targeted expression of a surface receptor Clec5a, which was found to supports for myeloid differentiation. In addition, HOXA9 expression was high in MDS patients with ASXL1 mutations while Clec5a expression was generally low in MDS patients. Thus, ASXL1-MT induced MDS-like disease in mice via derepression of Hoxa9 and miR-125a, and Clec5a downregulation. Our data provide evidence for a novel axis of MDS pathogenesis (ASXL1 mutations-upregulation of HoxA9 and miR-125a-downregulation of Clec5a) and implicate both ASXL1 mutants and miR-125a as therapeutic targets in MDS.
Myelodysplastic syndromes are induced by histone methylation–altering ASXL1 mutations.
Specimen part
View Samples