AbstractFollicular helper T (Tfh) cells are crucial for germinal center (GC) formation and humoral adaptive immunity. Mechanisms underlying Tfh cell differentiation in peripheral and mucosal lymphoid organs are incompletely understood. We report here that mTOR kinase complexes 1 and 2 (mTORC1 and mTORC2) are essential for Tfh cell differentiation and GC reaction under steady state and after antigen immunization and viral infection. Loss of mTORC1 and mTORC2 in T cells exerted distinct effects on Tfh cell signature gene expression, whereas increased mTOR activity promoted Tfh responses. Deficiency of mTORC2 impaired CD4+ T cell accumulation and IgA production, and aberrantly induced Foxo1 transcription factor. Mechanistically, the costimulatory molecule ICOS activated mTORC1 and mTORC2 to drive glycolysis and lipogenesis, and Glut1-mediated glucose metabolism promoted Tfh cell responses. Altogether, mTOR acts as a central node in Tfh cells to link immune signals to glucose metabolism and transcriptional activity.
mTORC1 and mTORC2 Kinase Signaling and Glucose Metabolism Drive Follicular Helper T Cell Differentiation.
Specimen part
View SamplesEffector (Teff) and regulatory (Treg) CD4 T cells undergo metabolic reprogramming to support proliferation and immune function. While Phosphatidylinositide 3-kinase (PI3K)/Akt/mTORC1 signaling induces the glucose transporter Glut1 and aerobic glycolysis for Teff proliferation and inflammatory function, mechanisms that regulate Treg metabolism and function remain unclear. We show that TLR signals that promote Treg proliferation increase Glut1, PI3K/Akt/mTORC1 signaling, and glycolysis. However, TLR-induced mTORC1 signaling also impaired Treg suppressive capacity. Conversely, FoxP3 opposed PI3K/Akt/mTOR signaling to reduce glycolysis and anabolic metabolism while increasing oxidative and catabolic metabolism. Importantly, Glut1 expression was sufficient to increase Treg numbers but reduced suppressive capacity and FoxP3 expression. Thus, inflammatory signals and FoxP3 balance mTORC1 signaling and glucose metabolism to control Treg proliferation and suppressive function. Overall design: RNAseq of induced Glut1 transgenic and control Treg
Foxp3 and Toll-like receptor signaling balance T<sub>reg</sub> cell anabolic metabolism for suppression.
Cell line, Subject
View SamplesActivated T cells differentiate into functional subsets which require distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to provide substrate for the tricarboxylic acid cycle and epigenetic reactions and here we identify a key role for GLS in T cell activation and specification. Though GLS-deficiency diminished T cell activation, proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet and Interferon-? expression and CD4 Th1 and CD8 CTL effector cell differentiation. These changes were mediated by differentially altered gene expression and chromatin accessibility, leading to increased sensitivity of Th1 cells to IL-2 mediated mTORC1 signaling. In vivo, GLS-null T cells failed to drive a Th17-mediated Graft-vs-Host Disease model. Transient inhibition of GLS, however, increased Th1 and CTL T cell numbers in viral and chimeric antigen receptor models. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation. Overall design: Cells were treated with glutaminase1 inhibitor or vehicle
Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism.
Specimen part, Subject
View SamplesNeural precursor cells (NPCs) in the mammalian neocortex generate various neuronal and glial cell types in a developmental stage-dependent manner. Most neocortical NPCs lose their neurogenic potential after birth. We have previously shown that high mobility group A (HMGA) proteins confer the neurogenic potential on early-stage NPCs during the midgestation period, although the underlying mechanisms are not fully understood. Here we performed microarray analysis and compared expression profiles between control and HMGA2-overexpressed NPCs.
IMP2 regulates differentiation potentials of mouse neocortical neural precursor cells.
Specimen part
View SamplesPurpose: The ability of adult zebrafish tissues to undergo dedifferentiation provides an opportunity to probe the molecular underpinnings of cell identity and reprogramming. Zebafish muscle regeneration utilizes dedifferentiation to reprogram mature multinucleated myocytes into dedifferentiated myoblast that re-enter the cell cycle. A unique advantage of this system is that the regenerating cell mass is large and fairly homogenous, facilitating genomics approaches to uncovering the underlying biology. Methods: To better understand cellular reprogramming of mature myocytes, we temporally analyzed the changing transcriptome leading up to the proliferative switch. RNA was obtained after Laser Micro-dissection (LMD) of Control, 9 hour post-injury (HPI) or 18 HPI using Trizol and micro column purification. Illumina''s TruSeq Stranded mRNA Library Prep Kit and 0.1 - 4 µg total mRNA from pooled purified RNA samples were used for performing ribosomal-depletion (Ribo-Zero Gold rRNA Removal Kit, Illumina) and library preparation. Sequencing was performed by the UM DNA Sequencing Core, using an Illumina Hi-Seq 2000 (50-cycle, single end read) platform. Results: Clustering and functional annotation of differentially expressed genes highlighted the importance of catabolic and phagocytic processes upregulation at 9 and 18 hours post injury (hpi). Furthermore, genes encoding principle regulators of chromatin states were actively re-regulated during the reprogramming process. Utilizing the accessibility of these tissues in the zebrafish model, kKnockdown experiments enabled in vivo validation and phenotypic analysis of candidate genes and pathways for their roles in genomic and cellular reprogramming. Additionally, we found that despite of their low expression levels, lncRNAs were highly represented in gene clusters with dynamic, “switch-like” expression profiles, and that miRNA processing was also found important for reprogramming Conclusions: We conclude that reprogramming of a “post-mitotic” myocyte into a dedifferentiated myoblast requires both heritable yet nuanced epigenetic alterations and molecular switches that involve transcription factors, miRNA and lncRNA, while maintaining the lineage restriction of the cell of origin. Overall design: Early time points post injury (9 & 18 hours) mRNA and lncRNA profiles of Zebrafish lateral eye muscle (EOM) were generated by deep sequencing, in quadruplicate, using Illumina Hi-seq.
Temporally distinct transcriptional regulation of myocyte dedifferentiation and Myofiber growth during muscle regeneration.
No sample metadata fields
View SamplesMutations of the transcriptional regulator Mecp2 cause the X-linked autism spectrum disorder Rett syndrome (RTT), and Mecp2 has been implicated in several other neurodevelopmental disorders. To identify potential target genes regulated directly or indirectly by MeCP2, we performed comparative gene expression analysis via oligonucleotide microarrays on Mecp2-/y (Mecp2-null) and wild-type CPN purified via fluorescence-activated cell sorting (FACS).
Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice.
Specimen part
View SamplesCrosslinking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins (RBPs). We developed a method for CLIP data analysis and applied it to compare 254 nm CLIP with PAR-CLIP, which involves crosslinking of photoreactive nucleotides with 365 nm UV light. We found small differences in the accuracy of these methods in identifying binding sites of HuR, a protein that binds low-complexity sequences and Argonaute 2, which has a complex binding specificity. We show that crosslink-induced mutations lead to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect sufficiently their sites under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific ribonucleases strongly biases the set of recovered binding sites. We finally show that this bias can be substantially reduced by milder nuclease digestion conditions. Overall design: We performed duplicate experiments for each variant of the CLIP protocol (CLIP, PAR-CLIP), each protein (HuR, Ago2), and enzymatic digestion (complete T1 digestion, mild MNase digestion). In addition, we performed a single PAR-CLIP experiment with mild T1 digestion.
A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reprogrammed Functional Brown Adipocytes Ameliorate Insulin Resistance and Dyslipidemia in Diet-Induced Obesity and Type 2 Diabetes.
Specimen part
View SamplesComparasion of each cell mRNA expression pattern
Reprogrammed Functional Brown Adipocytes Ameliorate Insulin Resistance and Dyslipidemia in Diet-Induced Obesity and Type 2 Diabetes.
Specimen part
View SamplesComparasion of each cell mRNA expression pattern
Reprogrammed Functional Brown Adipocytes Ameliorate Insulin Resistance and Dyslipidemia in Diet-Induced Obesity and Type 2 Diabetes.
Specimen part
View Samples