Differential gene expression in RNA isolated from stably-transfected EBERs-negative versus EBERs-positive HK1 cell lines
Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells.
Cell line
View SamplesWe used phytochemical profiling techniques to generate a list of compounds present in each of 13 Equisetum arvense samples sourced globally. We used microarrays to detail the global programme of gene expression underlying the treatment of the model system Saccharomyces cerevisiae to a chosen number of these extracts. A thorough bioinformatic analysis was performed to identify the relationship between phytochemical and gene expression response profiles.
The Saccharomyces cerevisiae transcriptome as a mirror of phytochemical variation in complex extracts of Equisetum arvense from America, China, Europe and India.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.
Specimen part
View SamplesDevelopment of the embryonic head is driven by the activity of gene regulatory networks of transcription factors. LHX1 is a homeobox transcription factor that plays an essential role in the formation of the embryonic head. The loss of Lhx1 function results in anterior truncation of the embryo caused by the disruption of morphogenetic movement of tissue precursors and the dysregulation of WNT signaling activity. Profiling the gene expression pattern in the Lhx1 mutant embryo revealed that tissues in anterior germ layers acquire posterior tissue characteristics, suggesting Lhx1 activity is required for the allocation and patterning of head precursor tissues. Here, we used LHX1 as an entry point to delineate its transcriptional targets and interactors and construct a LHX1-anchored gene regulatory network. Using a gain-of-function approach, we identified genes that immediately respond to Lhx1 activation. Meta-analysis of the datasets of LHX1-responsive genes and genes expressed in the anterior tissues of mouse embryos at head-fold stage, in conjunction with published Xenopus embryonic LHX1 (Xlim1) ChIP-seq data, has pinpointed the putative transcriptional targets of LHX1 and an array of genetic determinants functioning together in the formation of the mouse embryonic head. Overall design: Total RNA obtained from FLAG-Lhx1 and FLAG-Lhx1 mutant embryoid bodies differentiated over 2 days with or without doxycycline treatment for 16 hours. There are three replicates per condition.
A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.
Specimen part, Subject
View SamplesDevelopment of the embryonic head is driven by the activity of gene regulatory networks of transcription factors. LHX1 is a homeobox transcription factor that plays an essential role in the formation of the embryonic head. The loss of Lhx1 function results in anterior truncation of the embryo caused by the disruption of morphogenetic movement of tissue precursors and the dysregulation of WNT signaling activity. Profiling the gene expression pattern in the Lhx1 mutant embryo revealed that tissues in anterior germ layers acquire posterior tissue characteristics, suggesting Lhx1 activity is required for the allocation and patterning of head precursor tissues. Here, we used LHX1 as an entry point to delineate its transcriptional targets and interactors and construct a LHX1-anchored gene regulatory network. Using a gain-of-function approach, we identified genes that immediately respond to Lhx1 activation. Meta-analysis of the datasets of LHX1-responsive genes and genes expressed in the anterior tissues of mouse embryos at head-fold stage, in conjunction with published Xenopus embryonic LHX1 (Xlim1) ChIP-seq data, has pinpointed the putative transcriptional targets of LHX1 and an array of genetic determinants functioning together in the formation of the mouse embryonic head.
A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Orchestrated intron retention regulates normal granulocyte differentiation.
Specimen part
View SamplesUsing mRNA-seq, we determined intron retaining genes that were differentially regulated in FACS purified cells at three progressive stages of mouse granulopoiesis; CD34+Kit+Gr-1low promyelocytes, CD34-Kit-Gr-1mid myelocytes and CD34-Kit-Gr-1high granulocytes. We found that IR affects 86 genes, including those specific to granulocyte (Lyz2 and MMP8) and nuclear architecture (Lmnb1 and Lbr). IR was associated with the decrease in protein levels measured by mass spectrometry (P=0.0015, binomial test). Inhibition of NMD in granulocytes resulted in marked accumulation of 39/86 intron retaining mRNAs (P<0.05, RUV procedure with Holm-Bonferroni correction), indicating that IR triggers NMD to downregulate mRNA and protein expression.
Orchestrated intron retention regulates normal granulocyte differentiation.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cross-species gene expression analysis identifies a novel set of genes implicated in human insulin sensitivity.
Specimen part, Time
View SamplesRecent discovery reveals HFD insult can cause insulin resistance very rapidly, but the underlying mechanism is still not well understood. We performed a short term experiment in a Diet Induced Insulin resistance mouse model.
Cross-species gene expression analysis identifies a novel set of genes implicated in human insulin sensitivity.
Specimen part, Time
View SamplesWe analyzed small RNAs from three mammalian species, and found that in all these species piRNA-directed targeting is accompanied by the generation of short sequences that have a very precisely defined length and a specific spatial relationship with the guide piRNAs. Overall design: small RNA-seq of testes lysate (beta-eliminated)
Conserved generation of short products at piRNA loci.
No sample metadata fields
View Samples