Alopecia areata (AA) is a prevalent disease associated with major emotional distress, and lacks effective, safe therapeutics for patients with extensive hair loss. This is the first report of hair regrowth with specific cytokine antagonism, in three patients with extensive hair loss ranging from 40% scalp involvement to alopecia universalis. Ustekinumab, an IL-12/23p40 antagonist that is highly effective in psoriasis, showed impressive ability to induce hair regrowth, coupled with suppression of inflammatory pathways and upregulation of hair keratins. Our report suggests that extensive AA is reversible using targeted treatments, opening the door for specific cytokine antagonism for this debilitating disease.
Extensive alopecia areata is reversed by IL-12/IL-23p40 cytokine antagonism.
Sex, Specimen part, Disease stage, Subject, Time
View SamplesAfter 2 and 12 weeks of treatment, we observed significant reductions of 51% and 72%, respectively, in SCORAD scores. Clinical improvements were associated with significant gene expression changes in lesional but also nonlesional skin, particularly reductions in levels of TH2-, TH22-, and some TH17-related molecules (ie, IL-13, IL-22, CCL17, S100As, and elafin/peptidase inhibitor 3), and modulation of epidermal hyperplasia and differentiation measures.
Cyclosporine in patients with atopic dermatitis modulates activated inflammatory pathways and reverses epidermal pathology.
Sex, Age, Time
View SamplesThis was a phase II, randomized, placebo-controlled, double-blinded single center study (clinicaltrials.gov: NCT01806662) to investigate safety and efficacy of ustekinumab treatment in moderate-to-severe AD patients. Patients underwent 1:1 randomization using a computer generated subject randomization table by an unblinded pharmacist. to Subjects received subcutaneous ustekinumab or placebo at weeks 0, 4, and 16 with a crossover to the other agent (either ustekinumab or placebo) at weeks 16, 20, and 32 (Figure 1A) to ensure patient retention.
Efficacy and safety of ustekinumab treatment in adults with moderate-to-severe atopic dermatitis.
Specimen part, Disease, Treatment, Subject, Time
View SamplesWe conducted a randomized, double-blind, placebo-controlled trial in adults with moderate-to-severe AD unresponsive to conventional topical or systemic treatment. Fezakinumab (ILV-094; anti IL-22 monoclonal antibody) monotherapy was administered for 12 weeks (primary endpoint), and clinical responses were followed until week 20. AD transcriptome significantly improved at week 12 in fezakinumab vs. placebo (p<1E-18).
Baseline IL-22 expression in patients with atopic dermatitis stratifies tissue responses to fezakinumab.
Specimen part, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Polycomb repressive complex 2 is required for MLL-AF9 leukemia.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity.
Specimen part, Treatment
View SamplesWe evaluated gene expression changes in murine leukemia caused by retroviral overexpression of MLL-AF9. We compared wild-type (WT) leukemia cells with mutant leukemia cells after cre-mediated inactivation of homozygous conditional alleles for Ezh2 or Eed, both of which are components of the Polycomb Repressive Complex2.
Polycomb repressive complex 2 is required for MLL-AF9 leukemia.
Specimen part, Disease, Disease stage
View SamplesWe evaluated gene expression changes in secondary recipient murine leukemia caused by retroviral overexpression of MLL-AF9. We compared wild-type (WT) leukemia cells with mutant leukemia cells after cre-mediated inactivation of a homozygous conditional allele for Ezh2, a component of the Polycomb Repressive Complex2.
Polycomb repressive complex 2 is required for MLL-AF9 leukemia.
Specimen part, Disease, Disease stage
View SamplesConstitutively active MYC and reactivated telomerase often co-exist in cancers. While the reactivation of telomerase is thought to be essential for replicative immortality, MYC, in conjunction with co-factors, confers several growth advantages to cancer cells. However, it is unclear which co-factors sustain elevated MYC activity in tumors . Here, we identify TERT, the catalytic subunit of telomerase, as a novel regulator of MYC stability in cancers. Binding of TERT to MYC stabilizes its levels on chromatin, contributing to either activation or repression of its target genes. Mechanistically, TERT regulates MYC ubiquitination and stability, and this effect of TERT is independent of its role on telomeres. Genetic inhibition and knocking out of TERT phenocopied the loss of MYC, resulting in reduced disease burden of early- and late-stage MYC-driven murine lymphomas. Conversly, the ectopic expression of TERT could substitute for reduced MYC in these functions. Finally we show that TERT null mice, unlike Terc null mice, show delayed onset of MYC induced lymphomagenesis. Accordingly, inhibiting TERT function in primary human leukemia cells blocked the expression of MYC targets, while Terc depletion had no effects . Based on our data, we conclude that the re-expression of TERT, a direct MYC target in tumors, provides a feed-forward mechanism to potentiate MYC-dependent oncogenesis.
Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity.
Specimen part, Treatment
View SamplesBy screening for genes possessing canonical X-box sequences in promoters of three Caenorhabditis species, namely C. elegans, C. briggsae and C. remanei, we identified 93 genes (including known X-box regulated genes) that encode putative components of ciliated neurons in C. elegans and are subject to the same regulatory control. For many of these genes, restricted anatomical expression in ciliated cells was confirmed, and control of transcription by the ciliogenic DAF-19 RFX transcription factor was demonstrated by comparative transcriptional profiling of daf-19(+) and daf-19(-) animals.
Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics.
No sample metadata fields
View Samples