As a critical cellular stress sensor, p53 mediates a variety of defensive processes including cell-cycle arrest, apoptosis, and senescence to prevent propagation of hyperproliferative cells or cells with a damaged genome, hence the formation of neoplasia. Transactivation of downstream genes plays an important while sometimes controversial role in regulating these cellular processes. To evaluate the dependence on transcriptional activation in p53s activities, we generated genetically-modified mouse lines carrying mutations in the transactivation domains (TADs) of p53. These transactivatio-deficient mutants serve as unique reagents to probe the dependence on robust transactivation in p53-mediated cellular functions, as well as the underneath mechanisms. To identify genes differentially regulated by these p53 mutants, we performed gene expression profiling analysis on mouse embryonic fibroblast cells (MEFs) from these mice in the context of oncogenic Ras-induced premature cellular senescence.
Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression.
Specimen part
View SamplesWe report that colon adenomas from ApcMin/+ mice not only exhibit similarities in gene expression profile to colon adenomas from azoxymethane / dextran sulfate sodium-treated mice (with activating Ctnnb1 mutations) due to the activation of canonical WNT signaling, but also unique transcriptional changes in the pathways regulating cell cycle progression / proliferation, chromosome segregation / cytoskeletal organization and apoptosis. Subsequent experiments characterized changes in gene expression unique to colon adenomas from ApcMin/+ mice including increases in the H2afv, Map6 and Nsmf transcripts. Overall design: Examination of gene expression profiles in 2 different colon adenoma types with activated canonical WNT signaling, relative to their respective non-adenoma controls
Mutational Mechanisms That Activate Wnt Signaling and Predict Outcomes in Colorectal Cancer Patients.
Cell line, Treatment, Subject
View SamplesNOD mice were injected once a week with LTBR-Ig to block the LTBR-pathway, or with control monoclonal antibody MOPC from age 8 to 16 weeks old. Extraorbital lacrimal glands or submaxillary glands were dissected and total mRNA prepared. Each sample was either the combined lacrimals (2) from each mouse or individual salivary glands. There were 4 mice in each treatment group. Total mRNA was isolated and the quality was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Reverse transcription to prepare cDNA was performed using Invitrogen M-MLV system. The purpose was to determine changes in gene expression in glands due to blockade of the LTBR-pathway.
Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjögren's syndrome.
Specimen part, Treatment, Time
View SamplesIsoform quantification results for B6 mouse using Bowtie and RSEM. Overall design: ~400 islets were isolated and pooled from two B6 mice. Whole islet RNA was isolated using Rneasy purification columns (Qiagen), quantified (Nanodrop) and integrity verified (Agilent) prior to sequencing. ~94M total paired-end RNA-Seq reads were sequenced.
The Transcription Factor Nfatc2 Regulates β-Cell Proliferation and Genes Associated with Type 2 Diabetes in Mouse and Human Islets.
Specimen part, Cell line, Subject
View SamplesTo describe normal cardiac and brain development during late first and early second trimester in human fetuses using microarray and pathways analysis and the creation of a corresponding normal database. RNA from recovered tissues was used for transcriptome analysis with Affymetrix 1.0 ST microarray chip. From the amassed data we investigated differences in cardiac and brain development within the 10-18 GA period dividing the sample by GA in three groups: 10-12 (H1), 13-15(H2) and 16-18(H3) weeks. A fold change of 2 or above adjusted for a false discovery rate of 5% was used as initial cut-off to determine differential gene expression for individual genes. Test for enrichment to identify functional groups were carried out using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Array analysis correctly identified the cardiac specific genes, and transcripts reported to be differentially expressed were confirmed by qRT-PCR.
Metabolic gene profile in early human fetal heart development.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A comprehensive analysis of adiponectin QTLs using SNP association, SNP cis-effects on peripheral blood gene expression and gene expression correlation identified novel metabolic syndrome (MetS) genes with potential role in carcinogenesis and systemic inflammation.
Sex, Age, Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesGene expression profiles in this submission were part of an integrative DNA methylation and gene expression integrative study. The goal of this study was to determine whether DNA methylation patterns were disrupted in small airway epithelia of patients with Chronic Obstructive Pulmonary Disease (COPD) compared to airways from subjects with normal lung function. No subject has cancer or asthma at time of collection. Corresponding DNA methylation profiles for these subjects can be found at GSE55454.
DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesMolecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.
Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia.
Sex, Age, Specimen part
View SamplesCurrent methods to analyze gene expression measure steady-state levels of mRNA. In order to specifically analyze mRNA transcription, a technique has been developed that can be applied in-vivo. The technique is referred with the acronym NIAC-NTR (Non Invasive Application and Capture of Newly Transcribed RNA). This method makes use of the cellular pyrimidine salvage pathway and is based on affinity-chromatographic isolation of thiolated mRNA. When combined with data on mRNA steady-state levels, this method is able to assess the relative contributions of mRNA synthesis and degradation/stabilization. It overcomes limitations associated with currently available methods such as mechanistic intervention that disrupts cellular physiology, or the inability to apply the techniques in-vivo. The method has been applied to a model of serum response of cultured primary mouse embryonic fibroblasts.
Microarray analysis of newly synthesized RNA in cells and animals.
No sample metadata fields
View Samples