To identify genes regulated by Rx3 during optic vesicle morphogenesis, adult zebrafish carriers of a null rx3 mutation were mated. Before 13 hours post fertilization (hpf), the earliest time point at which optic vesicle evagination phenotypes could be reliably detected, offspring were phenotypically separated into pools comprising of mutants with an absence of optic vesicles or siblings exhibiting a wild-type phenotype. Three replicates of pooled RNA samples from 13 hpf eyeless mutants (rx3-/-) or phenotypically wild-type siblings (rx3+/+ or rx3+/-), and one replicate of 13 hpf wild-type zebrafish larva were collected for whole transcriptome sequencing. Overall design: Whole transcriptome sequencing (RNA-seq) was performed on zebrafish rx3-/- mutants, wild-type siblings and wild-type AB strains at 13 hpf
Genes and signaling networks regulated during zebrafish optic vesicle morphogenesis.
No sample metadata fields
View SamplesTCDD increased expression of numerous differentiation specific genes and decreased expression of numerous genes involved in mitochondrial health and redox homeostasis
2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated production of reactive oxygen species is an essential step in the mechanism of action to accelerate human keratinocyte differentiation.
Specimen part, Cell line
View SamplesPolycomb Repressive Complex 2 (PRC2) has been shown to play a key role in hematopoietic stem and progenitor cell (HSPC) function. Analyses of mouse mutants harboring deletions of core components have implicated PRC2 in fine-tuning multiple pathways that instruct HSPC behavior, yet how PRC2 is targeted to specific genomic loci within HSPCs remains unknown. Here we use shRNA-mediated knockdown to survey the function of known PRC2 accessory factors in HSPCs by testing the competitive reconstitution capacity of transduced murine fetal liver cells. We find that similar to the phenotype observed upon depletion of core subunit Suz12, depleting Jarid2 enhances the competitive transplantation capacity of both fetal and adult, mouse and human HSPCs. Gene expression profiling revealed common Suz12 and Jarid2 target genes that are enriched for the H3K27me3 mark established by PRC2. These data implicate Jarid2 as an important component of PRC2 that has a central role in coordinating HSPC function. Overall design: RNA-seq of jarid knockdown, suz knockdown and control from HSPC in 16 week old mice.
Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2.
No sample metadata fields
View SamplesUnderstanding distinct gene expression patterns of normal adult and developing fetal human pancreatic a and b cells is crucial for developing stem cell therapies, islet regeneration strategies, and therapies designed to increase b cell function in patients with diabetes (type 1 or 2). Toward that end, we have developed methods to highly purify a, b, and d cells from human fetal and adult pancreata by intracellular staining for the cell-specific hormone content, sorting the sub-populations by flow cytometry and, using next generation RNA sequencing, we report on the detailed transcriptomes of fetal and adult a and b cells. We observed that human islet composition was not influenced by age, gender, or body mass index and transcripts for inflammatory gene products were noted in fetal b cells. In addition, within highly purified adult glucagon-expressing a cells, we observed surprisingly high insulin mRNA expression, but not insulin protein expression. This transcriptome analysis from highly purified islet a and b cell subsets from fetal and adult pancreata offers clear implications for strategies that seek to increase insulin expression in type 1 and type 2 diabetes. Overall design: RNA-sequencing of highly purified human adult and fetal islet cell subset was performed using our newly developed method. Using this data, we can study and compare the detailed transcriptome or alpha and beta cells during development.
Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets.
No sample metadata fields
View SamplesThe detachment of epithelial cells, but not cancer cells, causes anoikis due to reduced energy production. Invasive tumor cells generate three splice variants of the metastasis gene osteopontin. The cancer-specific form osteopontin-c supports anchorage-independence through inducing oxidoreductases and upregulating intermediates/enzymes in the hexose monophosphate shunt, glutathione cycle, glycolysis, glycerol phosphate shuttle, and mitochondrial respiratory chain. Osteopontin-c signaling upregulates glutathione (consistent with the induction of the enzyme GPX-4), glutamine and glutamate (which can feed into the tricarboxylic acid cycle). Consecutively, the cellular ATP levels are elevated. The elevated creatine may be synthesized from serine via glycine and also supports the energy metabolism by increasing the formation of ATP. Metabolic probing with N-acetyl-L-cysteine, L-glutamate, or glycerol identified differentially regulated pathway components, with mitochondrial activity being redox dependent and the creatine pathway depending on glutamine. The effects are consistent with a stimulation of the energy metabolism that supports anti-anoikis. Our findings imply a synergism in cancer cells between osteopontin-a, which increases the cellular glucose levels, and osteopontin-c, which utilizes this glucose to generate energy. Overall design: mRNA profiles of MCF-7 cells transfected with osteopontin-a, osteopontin-c and vector control were generated by RNA-Seq, in triplicate, by Illumina HiSeq.
Energy metabolism during anchorage-independence. Induction by osteopontin-c.
No sample metadata fields
View SamplesCone photoreceptors are specialised sensory retinal neurons responsible for photopic vision, colour perception and visual acuity. Retinal degenerative diseases are a heterogeneous group of eye diseases in which the most severe vision loss typically arises from cone photoreceptor dysfunction or degeneration. Establishing a method to purify cone photoreceptors from retinal tissue can accelerate the identification of key molecular determinants that underlie cone photoreceptor development, survival and function. The work herein describes a new method to purify enhanced green fluorescent protein (EGFP)-labelled cone photoreceptors from adult retina of Tg(3.2TCP:EGFP) zebrafish. Electropherograms confirmed downstream isolation of high-quality RNA with RNA integrity number (RIN) >7.6 and RNA concentration >5.7 ng/l obtained from both populations. Reverse Transcriptase-PCR (RT-PCR) confirmed that the EGFP-positive cell populations express known genetic markers of cone photoreceptors that were not expressed in the EGFP-negative cell population. This work is an important step towards the identification of cone photoreceptor-enriched genes, protein and signalling networks responsible for their development, survival and function. In addition, this advancement facilitates the identification of novel candidate genes for inherited human blindness.
HDAC6 inhibition by tubastatin A is protective against oxidative stress in a photoreceptor cell line and restores visual function in a zebrafish model of inherited blindness.
Specimen part
View SamplesThe Keap1/Nrf2 signaling pathway is a tractable target for the pharmacological prevention of tumorigenesis. 3H-1,2-dithiole-3-thione (D3T) and 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im) are representative members of two classes of Nrf2-activating chemopreventive agents. Natural dithiolethiones have been widely used in clinical trials for cancer chemoprevention. Synthetic triterpenoids, however, have been shown to be significantly more potent Nrf2 activators and are under clinical evaluation for the treatment of chronic kidney disease. This study seeks to characterize the structure-activity relationship between D3T and CDDO-Im in mouse liver tissue. To this end we treated Wt and Nrf2-null mice with 300 umol/kg bw D3T and 3, 10, and 30 umol/kg bw CDDO-Im every other day for 5 days and evaulated global gene expression changes as a product of both treamtent and genotype using Affymetrix microarray.
Pharmacogenomics of Chemically Distinct Classes of Keap1-Nrf2 Activators Identify Common and Unique Gene, Protein, and Pathway Responses In Vivo.
Sex, Age, Specimen part
View SamplesMethamphetamine (Meth) seeking progressively increases after withdrawal (incubation of Meth craving), but the transcriptional mechanisms that contribute to this incubation are unknown. Here we used RNA-sequencing to analyze transcriptional profiles associated with incubation of Meth craving in central amygdala (CeA) and orbitofrontal cortex (OFC), two brain areas previously implicated in relapse to drug seeking. We trained rats to self-administer either saline (control condition) or Meth (10 days; 9 h/day, 0.1 mg/kg/infusion). Next, we collected brain tissue from CeA and OFC on withdrawal day 2 (when Meth seeking is low and non-incubated) and on day 35 (when Meth seeking is high and incubated), for subsequent RNA-sequencing. In CeA, we identified 10-fold more differentially expressed genes (DEGs) on withdrawal day 35 than day 2. These genes were enriched for several biological processes, including protein ubiquitination and histone methylation. In OFC, we identified many fewer expression changes than in CeA. Interestingly, there were more DEGs on withdrawal day 2 than on day 35. Several genes in OFC showed opposing expression changes on withdrawal day 2 (increase) when compared to withdrawal day 35 (decrease), which was further validated by qPCR. Our analyses highlight the CeA as a key region of transcriptional regulation associated with incubation of Meth seeking. In contrast, transcriptional regulation in OFC may contributes to Meth seeking during early withdrawal. Overall, these findings provide a unique resource of gene expression data for future studies examining transcriptional mechanisms in CeA that mediate Meth seeking after prolonged withdrawal. Overall design: Exp. 1 Genome-wide transcriptional profiling of CeA during incubation of Meth craving We performed intravenous surgeries on two groups of rats (total n=26) and trained them to self-administer either saline (n=12) or Meth (n=14) as described above in 2 independent runs. We performed live decapitation on withdrawal days 2 and 35, and collected CeA tissue for mRNA preparation. We used the extracted mRNA for library preparation and RNA-sequencing. We pooled tissue from two rats as one biological replicate. The number of biological replicates in each group was: Day 2: Saline=3, Meth=4; Day 35: Saline=3, Meth=3. Exp. 2 Genome-wide transcriptional profiling of OFC during incubation of Meth craving As above, two groups of rats (total n=32) were trained to self-administer saline (n=16) or Meth (n=16) in 2 independent runs. We performed live decapitation on withdrawal days 2 and 35, and collected OFC tissue for mRNA preparation. We used the extracted mRNA either for library preparation and RNA-sequencing or for cDNA synthesis and qPCR. We pooled tissue from two rats as one biological replicate. The number of biological replicates in each group was: Day 2: Saline=4, Meth=4; Day 35: Saline=4, Meth=4.
Genome-wide transcriptional profiling of central amygdala and orbitofrontal cortex during incubation of methamphetamine craving.
Specimen part, Cell line, Treatment, Subject
View SamplesObjective: The etiology of PCOS is mostly unknown. Existing data support both genetic and environmental factors in its pathogenesis. Design: Prospective case - control study. Setting: University Hospital. Patients: 25 patients undergoing IVF-ICSI treatment. Intervention: Genome-wide oligonucleotide microarray technology was used to study differential gene-expression patterns of cultured human cumulus cells from IVF patients divided into 4 groups according to disease state (PCOS vs. Control) and BMI (Obese vs. Lean). Results: Two differential PCOS gene expression profiles were established: Lean-Type was formed by comparing PCOS lean (PL) vs. non-PCOS lean (NL) individuals; Obese-Type was formed by comparing PCOS obese (PO) vs. non-PCOS (NO) obese patients. Conclusions: Different molecular pathways are associated with PCOS in Lean and Obese individuals, as demonstrated by gene expression profiling of cumulus cells. Our findings provide insights into the molecular pathogenesis of PCOS.
Gene expression microarray profiles of cumulus cells in lean and overweight-obese polycystic ovary syndrome patients.
Sex
View SamplesThe analysis of capped RNAs by massively parallel sequencing has identified a large number of previously unknown transcripts, some of which are small RNAs and others are 5 truncated forms of RefSeq genes. The latter may be generated by endonuclease cleavage or by stalling of Xrn1 at defined sites. With the exception of promoter-proximal transcripts the caps on all of these are added post-transcriptionally by a cytoplasmic capping enzyme complex that includes capping enzyme and a kinase that converts 5-monophosphate ends to a diphosphate capping substrate. We previously described a modified form of capping enzyme with dominant negative activity against cytoplasmic capping (DN-cCE). A tet-inducible form of this was used to identify substrates for cytoplasmic capping by treating cytoplasmic RNA from control and induced cells with and without Xrn1. Surviving RNA was analyzed on Affymetrix Human Exon 1.0 arrays and scored for changes in probe intensity as a function of its position on each RefSeq gene to derive a factor (alpha) that could be compared between sets. Notably, transcriptome-wide changes were not evident unless RNA was treated with Xrn1. This analysis identified 2,666 uncapped mRNAs in uninduced cells, 672 mRNAs that appeared in the uncapped pool in cells expressing DN-cCE, and 835 mRNAs that were in both populations. Changes in cap status of 10 re-capping targets and 5 controls were assessed by 3 independent measures; susceptibility to Xrn1, recovery with a biotin-tagged DNA primer after ligating a complementary RNA oligonucleotide to uncapped 5 ends, and binding or exclusion from a high affinity cap-binding matrix comprised of immobilized eIF4E and the corresponding binding domain of eIF4G.
Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability.
Cell line
View Samples