Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping versus awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is because the previous studies pooled transcripts from all brain cells, including neurons and glia.
Effects of sleep and wake on oligodendrocytes and their precursors.
Specimen part
View SamplesThe goal of this work was to identify all estrogen receptor beta target genes using RNA sequencing in MDA-MB-468 triple negative breast cancer cells engineered with inducible expression of full length estrogen receptor beta. Overall design: MDA-MB-468 breast cancer cells with inducible ERb expression (MDA-468-ERb cells) were treated in triplicate with vehicle (control, no ERb) or doxycycline (plus ERb) for 48 hr prior to treatment with 0.1% DMSO vehicle or 10 nM 17b-estradiol for 4 hr.
Research resource: global identification of estrogen receptor β target genes in triple negative breast cancer cells.
No sample metadata fields
View SamplesGATA factors interact with simple DNA motifs (WGATAR) to regulate critical processes, including hematopoiesis, but very few WGATAR motifs are occupied in genomes. Given the rudimentary knowledge of mechanisms underlying this restriction, and how GATA factors establish genetic networks, we used ChIP-seq to define GATA-1 and GATA-2 occupancy genome-wide in erythroid cells. Coupled with genetic complementation analysis and transcriptional profiling, these studies revealed a rich collection of targets containing a characteristic binding motif of greater complexity than WGATAR. GATA factors occupied loci encoding multiple components of the Scl/TAL1 complex, a master regulator of hematopoiesis and leukemogenic target. Mechanistic analyses provided evidence for cross-regulatory and autoregulatory interactions among components of this complex, including GATA-2 induction of the hematopoietic corepressor ETO-2 and an ETO-2 negative autoregulatory loop. These results establish fundamental principles underlying GATA factor mechanisms in chromatin and illustrate a complex network of considerable importance for the control of hematopoiesis.
Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy.
Specimen part, Cell line
View SamplesTotal RNA was analyzed from either uninduced or -estradiol treated G1E-ER-GATA cells to determine changes in gene expression upon induction of erythroid maturation (treated).
Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy.
Specimen part
View SamplesSamd14 was discovered as a novel GATA-2 target gene. Samd14 increased hematopoietic progenitor levels/activity, promoted signaling by a pathway instrumental for hematopoietic stem/progenitor cell regulation (Stem Cell Factor/c-Kit), and c-Kit rescued Samd14 loss-of-function phenotypes Overall design: A control shRNA or an shRNA targeting Samd14 was retrovirally introduced to fetal liver ex vivo cultures. Progenitor cells (CD71-, Ter119-) were isolated and analyzed from these cultures
Hematopoietic Signaling Mechanism Revealed from a Stem/Progenitor Cell Cistrome.
No sample metadata fields
View SamplesDendritic cells (DCs) and macrophages (MPs) are important for immunological homeostasis in the colon. We found that F4/80hi CX3CR1hi (CD11b+CD103-) cells account for 80% of mouse colonic lamina propria (cLP) MHC-IIhi cells. Both CD11c+ and CD11c- cells within this population were identified as MPs based on multiple criteria, including a MP transcriptome revealed by microarray analysis. These MPs constitutively released high levels of IL-10 at least partially in response to the microbiota via an MyD88-independent mechanism. In contrast, cells expressing low to intermediate levels of F4/80 and CX3CR1 were identified as DCs, based on phenotypic and functional analysis and comprise three separate CD11chi cell populations: CD103+CX3CR1-CD11b- DCs, CD103+CX3CR1-CD11b+ DCs and CD103-CX3CR1intCD11b+ DCs. In non-inflammatory conditions, Ly6Chi monocytes differentiated primarily into CD11c+, but not CD11c- MPs. In contrast, during colitis, Ly6Chi monocytes massively invaded the colon and differentiated into pro-inflammatory CD103-CX3CR1intCD11b+ DCs, which produced high levels of IL-12, IL-23, iNOS and TNF. These findings demonstrate the dual capacity of Ly6Chi blood monocytes to differentiate into either regulatory MPs or inflammatory DCs in the colon, and that the balance of these immunologically antagonistic cell types is dictated by microenvironmental conditions.
Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon.
No sample metadata fields
View SamplesOur understanding of cellular mechanisms by which animals regulate their response to starvation is limited despite the close relevance of the problem to major human health issues. L1 diapause of Caenorhabditis elegans, where newly hatched first stage larval arrested in response to food-less environment, is an excellent system to study the problem. We found through genetic manipulation and lipid analysis that ceramide biosynthesis, particularly those with longer fatty acid side chains, critically impacts animal survival during L1 diapause. Genetic and expression analyses indicate that ceramide likely regulate this response by affecting gene expression and activity in multiple regulatory pathways known to regulate starvation-induced stress, including the insulin-IGF-1 signaling (IIS) pathway, Rb and other pathways that mediate pathogen/toxin/oxidative stress responses. These findings provide an important insight into the roles of sphingolipid metabolism in not only starvation response but also aging and food-response related human health problems.
Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in Caenorhabditis elegans.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm.
No sample metadata fields
View SamplesWe identified 4,356 genes with expression differences associated with a high-fat diet, with 184 genes exhibiting a sex-by-diet interaction. Dietary fat dysregulated several pathways, such as cytokine-cytokine receptor interaction, chemokine signaling, and oxidative phosphorylation. Grant: Funding source: American Heart Association Grant number: 16PRE26420105 Title: The effect of maternal over-nutrition on obesity, epigenetics, and gene expression Awarded to Madeline Keleher Overall design: We performed RNA-seq in 21 total libraries, each with two mice of the same sex and diet pooled together (There were 6 low-fat-fed female libraries, 5 libraries of high-fat-fed females, 5 libraries of low-fat-fed males, and 5 libraries of high-fat-fed males). A 1x50 single read sequencing run was done on an Illumina HiSeq 2500 machine (Illumina Inc.)
A high-fat diet alters genome-wide DNA methylation and gene expression in SM/J mice.
Sex, Specimen part, Cell line, Subject
View SamplesThe first embryonic cell divisions rely on maternally stored mRNA and proteins. The zygotic genome is initially transcriptionally silenced and activated later in a process called zygotic genome activation (ZGA). ZGA in any species is still a poorly understood process; the timing of transcription onset is controversial and the identity of the first transcribed genes unclear. Zebrafish, Danio rerio, is a rapidly developing vertebrate model, which is accessible to experimentation and global studies before, during and after ZGA. Overall design: To accurately determine the onset of ZGA and to identify the first transcripts in zebrafish, we developed a metabolic labeling method, utilizing the ribonucleotide analog 4-thio-UTP, which allows efficient and specific affinity purification of newly transcribed RNA. Using deep sequencing, we characterized the onset of transcription in zebrafish embryos at 128-, 256-, and 512-cell stages. We identified 592 nuclear-encoded zygotically transcribed genes, comprising 670 transcript isoforms. Mitochondrial genomes were highly transcribed at all time points. Further, bioinformatic analysis revealed an enrichment of transcription factors and miRNAs among the newly transcribed genes, suggesting mechanistic roles for the early genes that are required to activate subsequent gene expression programs in development. Interestingly, analysis of gene-architecture revealed that zygotically transcribed genes are often intronless and short, reducing transcription and processing time of the transcript. The newly generated dataset enabled us to compare zygotically transcribed genes over a broad phylogenetic distance with fly and mouse early zygotic genes. This analysis revealed that short gene length is a common characteristic for early zygotically expressed genes. However, we detected a poor level of overlap for shared orthologs.
The earliest transcribed zygotic genes are short, newly evolved, and different across species.
No sample metadata fields
View Samples