TWEAK/Fn14 signaling may regulate the expression of genes involved in epithelial repair and mucosal inflammation. Comparing the gene signatures in WT and TWEAK KO mice will inform the biology of TWEAK/Fn14 pathway in the GI tract.
Interleukin-13 damages intestinal mucosa via TWEAK and Fn14 in mice-a pathway associated with ulcerative colitis.
Specimen part, Treatment
View SamplesOral food intake maintains gastrointestinal cell turnover and impacts the morphology and function of intestinal epithelial cells. However, the underlying mechanism is not fully elucidated, especially in the large intestine. Therefore, we analyzed the colonic epithelial cell turnover in starved and re-fed mice.
Microbiota-derived lactate accelerates colon epithelial cell turnover in starvation-refed mice.
Sex, Age, Specimen part, Treatment
View SamplesIt remains unclear how the ectopic expression of defined transcription factors induces dynamic changes in gene expression profiles that establish a pluripotent state during direct cell reprogramming. In the present study, we first identified a temporal gene expression program during the reprogramming process. Promoter analyses then predicted the role of two forkhead box transcription factors, Foxd1 and Foxo1, as mediators of the gene expression program. Knockdown of Foxd1 or Foxo1 reduced the number of induced pluripotent stem cells (iPSCs). The knockout of Foxd1 prevented the downstream transcription program, including the expression of reprogramming marker genes. Interestingly, the expression level of Foxd1 was also transiently increased in a small population of cells in the middle stage of reprogramming. The presence or absence of Foxd1 expression in this stage was correlated with a future cell fate as iPSCs or non-reprogrammed cells. These results suggest that Foxd1 is a mediator and indicator of the successful progression of the gene expression program in cell reprogramming.
Foxd1 is a mediator and indicator of the cell reprogramming process.
Specimen part, Time
View SamplesFunctional subsets of iNKT cells, NKT1, NKT2 and NKT17, have been reported to arise during the thymus to peripheral differentiation stages. The key transcription factors for NKT1, NKT2 and NKT17 development in the thymus have been identified as T-bet, Gata3 and Ror?t, respectively. In contrast, these iNKT cell subsets can also undergo further differentiation in the periphery. Eomesodermin (Eomes) is a T-box transcription factor with high homology to T-bet and is expressed by activated CD8+ T cells as well as in resting and activated NK cells. However, its role in invariant (i)NKT cells remains unknown. Here, we show the impact of Eomes on iNKT cells in the thymus and peripheral tissue using conditional knockout (Eomes-cKO) mice. Eomes regulates the differentiation of NKT1 cells in the thymus. In the peripheral tissue, Klrg1+ iNKT1 cells are generated in lung after vaccination with ?-GalCer-pulsed DCs (DC/Gal) as memory like iNKT cells. In the current study, we found that Eomes also regulates their differentiation into memory-like KLRG1+iNKT cells in the periphery. Overall design: RNA-seq of invariant Natural Killer T cell population in steady state and primed state from 2 genotypes of mice
Eomes transcription factor is required for the development and differentiation of invariant NKT cells.
Specimen part, Cell line, Subject
View SamplesThe signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. The purpose of this study was to identify eye-specific genes controlled by RA during photoreceptor differentiation in the zebrafish.
Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish.
Specimen part
View SamplesIt remains unclear how the ectopic expression of defined transcription factors induces dynamic changes in gene expression profiles that establish a pluripotent state during direct cell reprogramming. In the present study, we first identified a temporal gene expression program during the reprogramming process. Promoter analyses then predicted the role of two forkhead box transcription factors, Foxd1 and Foxo1, as mediators of the gene expression program. Knockdown of Foxd1 or Foxo1 reduced the number of induced pluripotent stem cells (iPSCs). The knockout of Foxd1 prevented the downstream transcription program, including the expression of reprogramming marker genes. Interestingly, the expression level of Foxd1 was also transiently increased in a small population of cells in the middle stage of reprogramming. The presence or absence of Foxd1 expression in this stage was correlated with a future cell fate as iPSCs or non-reprogrammed cells. These results suggest that Foxd1 is a mediator and indicator of the successful progression of the gene expression program in cell reprogramming.
Foxd1 is a mediator and indicator of the cell reprogramming process.
No sample metadata fields
View SamplesTotal RNA from trichomes of fifth and sixth rosette leaves of three-week-old wild-type and gtl1-1 mutants (Figure 3B) were extracted. We found a total number of 1,759 genes, corresponding to 1,694 probes on the ATH1 chip, that show differential expression of at least 1.3-fold. Out of these 1,694 genes, 47.2% are positively regulated and 52.8% are negatively regulated by GTL1.
Transcriptional repression of the APC/C activator CCS52A1 promotes active termination of cell growth.
Specimen part
View SamplesThe fields of drug discovery and regenerative medicine require large numbers of adult human primary hepatocytes. For this purpose, it is desirable to use hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells. To develop an efficient HLCs induction method, we constructed a red fluorescent reporter, CYP3A7R, in which DsRed is placed under the transcriptional regulation of CYP3A7 coding for a human fetus-type P450 enzyme. We created transgenic mice using mouse embryonic stem cells (mESCs) carrying a CYP3A7R transgene.
Real-time fluorometric evaluation of hepatoblast proliferation in vivo and in vitro using the expression of CYP3A7 coding for human fetus-specific P450.
Specimen part
View SamplesRNA-Seq analysis of SSA treated cells Overall design: HeLa cells, nuclear and cytoplasmic fractions, treated with SSA or MeOH
Global analysis of pre-mRNA subcellular localization following splicing inhibition by spliceostatin A.
No sample metadata fields
View SamplesHuR-deficient cells showed the decreased expression of genes involved in chemotaxis, cell proliferation and signal transduction.
Hu Antigen R Regulates Antiviral Innate Immune Responses through the Stabilization of mRNA for Polo-like Kinase 2.
Specimen part, Cell line
View Samples