Two-dimensional (2D) nanomaterials, an ultrathin class of materials such as graphene, nanoclays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs), have emerged as a new generation of materials due to their unique properties relative to macroscale counterparts. However, little is known about the transcriptome dynamics following exposure to these nanomaterials. Here we investigate the interactions of 2D nanosilicates, a layered clay, with human mesenchymal stem cells (hMSCs) at the whole transcriptome level by high-throughput sequencing (RNA-seq). Analysis of cell-nanosilicate interactions by monitoring change in transcriptome profile uncovers key biophysical and biochemical cellular pathways triggered by nanosilicates. A widespread alteration of genes is observed due to nanosilicate exposure as more than 4,000 genes are differentially expressed. The change in mRNA expression levels reveal clathrin-mediated endocytosis of nanosilicates. Nanosilicate attachment to cell membrane and subsequent cellular internalization activate stress-responsive pathways such as mitogen activated protein kinase (MAPK), which subsequently directs hMSC differentiation towards osteogenic and chondrogenic lineages. This study provides transcriptomic insight on the role of surface-mediated cellular signaling triggered by nanomaterials and enables development of nanomaterials-based therapeutics for regenerative medicine. This approach in understanding nanomaterial-cell interactions, illustrates how change in transcriptomic profile can predict downstream effects following nanomaterial treatment. Overall design: Examination of affect of 2D nanosilicates on hMSCs
Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates.
Specimen part, Treatment, Subject
View SamplesThe gene encoding a protein (AmGSTF1) associated with multiple herbicide resistance (MHR) in black-grass was transgenically expressed in Arabidopsis thaliana.The goal of this study was to determine if AmGSTF1 could elicit an MHR phenotype in the transgenic host.
Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds.
Specimen part
View SamplesIncreasing alpha 7 beta 1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression.
No sample metadata fields
View SamplesAnalysis of integrin alpha7 transgenic mice skeletal muscle transcription profiles comparing to wild type controls. Integrin alpha7 is the major laminin binding integrin in muscle cells. Enhancing its expression has been demonstrated to alleviate pathology in a murine model of Duchenne muscular dystrophy. Results of this study provide insights into the effects of increasing integrin alpha7 expression on skeletal muscle transcription and physiology in vivo. This analysis also evaluates any potential possible side effects associate with enhancing integrin alpha7 in skeletal muscle.
Increasing alpha 7 beta 1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression.
Sex, Age, Specimen part
View SamplesAndrogens are a prequisite for the development of human prostate and prostate cancer. Androgen action is mediated via androgen receptor. Androgen ablation therapy is used for the treatment of metastasized prostate cancer. The aim of the study was to identify genes differentially expressed in benign human prostate, prostate cancer and in prostate tissue three days after castration. These genes are potential diagnostic and therapeutic targets for prostate cancer and benign prostatic hyperplasia.
Identification of androgen-regulated genes in human prostate.
Specimen part, Disease, Treatment
View SamplesMonastrol treatment of Leishmania donovani infected macrophages
A member of the Ras oncogene family, RAP1A, mediates antileishmanial activity of monastrol.
Specimen part, Disease, Treatment
View SamplesTwo high throughput transcript sequencing methods, Digital Gene Expression (DGE) Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS) and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG) soybean isoline that carries the dominant P1 allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models) predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, Glyma04g35130, in wild-type soybean was of interest as it has high homology to the cotton gene GhRDL1 gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of Glyma04g35130 among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. Overall design: 2 samples examined: Clark standard (wild type) and Clark glabrous (soybean hairless mutant)
Transcript profiling reveals expression differences in wild-type and glabrous soybean lines.
Specimen part, Subject
View SamplesHuman adenovirus 5 encodes a small set of miRNAs, which are generated by DICER-mediated processing of 2 larger precursors, the so-called virus-associated RNAs I and II. To identify targets of one of the major miRNA isoforms derived from virus-associated RNAI (mivaRNAI-137), we isolated Argonaute complexes of mivaRNAI-137-transfected cells and analyzed co-purifying RNAs by microarray analysis. RNAs enriched in Argonaute complexes of mivaRNAI-137-transfected cells compared to cells transfected with a control siRNA were identified and subjected to further validation. RNAs specifically associated with Argonaute-containining complexes of adenovirus 5-infected cells were identified as well.
Identification of RISC-associated adenoviral microRNAs, a subset of their direct targets, and global changes in the targetome upon lytic adenovirus 5 infection.
Cell line
View SamplesTranscriptomes of mesenchymal stromal cells from bone marrow (bmMSC) were compared to MSC from term placenta (pMSC).
Expression of Desmoglein 2, Desmocollin 3 and Plakophilin 2 in Placenta and Bone Marrow-Derived Mesenchymal Stromal Cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Temporal clustering of gene expression links the metabolic transcription factor HNF4α to the ER stress-dependent gene regulatory network.
Specimen part
View Samples