Barrett's esophagus is characterized by the replacement of squamous epithelium with specialized intestinal metaplastic mucosa. The exact mechanisms of initiation and development of Barrett's metaplasia remain unknown, but a hypothesis of successful adaptation against noxious reflux components has been proposed. To search for the repertoire of adaptation mechanisms of Barrett's metaplasia, we employed high-throughput functional genomic and proteomic methods that defined the molecular background of metaplastic mucosa resistance to reflux. Transcriptional profiling was established for 23 pairs of esophageal squamous epithelium and Barrett's metaplasia tissue samples using Affymetrix U133A 2.0 GeneChips and validated by quantitative real-time polymerase chain reaction. Differences in protein composition were assessed by electrophoretic and mass-spectrometry-based methods. Among 2,822 genes differentially expressed between Barrett's metaplasia and squamous epithelium, we observed significantly overexpressed metaplastic mucosa genes that encode cytokines and growth factors, constituents of extracellular matrix, basement membrane and tight junctions, and proteins involved in prostaglandin and phosphoinositol metabolism, nitric oxide production, and bioenergetics. Their expression likely reflects defense and repair responses of metaplastic mucosa, whereas overexpression of genes encoding heat shock proteins and several protein kinases in squamous epithelium may reflect lower resistance of normal esophageal epithelium than Barrett's metaplasia to reflux components. Despite the methodological and interpretative difficulties in data analyses discussed in this paper, our studies confirm that Barrett's metaplasia may be regarded as a specific microevolution allowing for accumulation of mucosal morphological and physiological changes that better protect against reflux injury.
Molecular defense mechanisms of Barrett's metaplasia estimated by an integrative genomics.
Sex, Age
View SamplesParathyroid hormone (PTH) plays an essential role in regulating calcium and bone homeostasis in the adult, but whether PTH is required at all for regulating fetal-placental mineral homeostasis is uncertain. To address this we treated Pth-null mice in utero with 1 nmol PTH (1-84) or saline and examined placental calcium transfer 90 minutes later. It was found that placental calcium transfer increased in Pth-null fetuses treated with PTH as compared to Pth-null fetuses treated with saline. Subsequently, to determine the effect of PTH treatment on placental gene expression, in a separate experiment, 90 minutes after the fetal injections the placentas were removed for subsequent RNA extraction and microarray analysis.
Parathyroid hormone regulates fetal-placental mineral homeostasis.
Sex, Specimen part, Treatment
View SamplesAdropin is a multifunctional peptide hormone encoded by the ENHO (energy homeostasis associated) gene. It plays a role in mechanisms related to increased adiposity, insulin resistance, as well as glucose and lipid metabolism. The low adropin levels are strongly associated with obesity independent insulin resistance. On the other hand, overexpression or exogenous administration of adropin improves glucose homeostasis. The multidirectional, adropin-related effects associated with the regulation of metabolism in humans also appear to be attributable to the effects of this peptide on the activity of various elements of the endocrine system including adrenal cortex. Therefore, the main purpose of the present study was to investigate the effect of adropin on proliferation and secretory activity in the human HAC15 adrenal carcinoma cell line.
Adropin Stimulates Proliferation and Inhibits Adrenocortical Steroidogenesis in the Human Adrenal Carcinoma (HAC15) Cell Line.
Specimen part, Cell line
View SamplesWe examined genome-wide variation in transcription factor binding in different individuals and a chimpanzee using chromatin immunoprecipitation followed by massively-parallel sequencing (ChIP-Seq). The binding sites of RNA Polymerase II (Pol II) as well as a key regulator of immune responses, NFkB, were mapped in ten HapMap lymphoblastoid cell lines derived from individuals of African, European, and Asian ancestry, including a parent-offspring trio. We also mapped gene expression in all ten human cell lines for two treatment conditions: a) no treatment and b) following induction by TNF-alpha. Overall design: Genome-wide comparison of Pol II and NF-KappaB binding in ten individuals. RNA-seq study with no treatment.
Variation in transcription factor binding among humans.
No sample metadata fields
View SamplesWe examined genome-wide variation in transcription factor binding in different individuals and a chimpanzee using chromatin immunoprecipitation followed by massively-parallel sequencing (ChIP-Seq). The binding sites of RNA Polymerase II (Pol II) as well as a key regulator of immune responses, NFkB, were mapped in ten HapMap lymphoblastoid cell lines derived from individuals of African, European, and Asian ancestry, including a parent-offspring trio. We also mapped gene expression in all ten human cell lines for two treatment conditions: a) no treatment and b) following induction by TNF-alpha. Overall design: Genome-wide comparison of Pol II and NF-KappaB binding in ten individuals. RNA-seq study with TNF-alpha treatment.
Variation in transcription factor binding among humans.
No sample metadata fields
View SamplesThere is growing evidence from epidemiological and experimental studies suggesting that early life exposure to environmental chemicals can have long-term consequences that are seen in adults and not apparent early in life. We recently demonstrated that developmental exposure of zebrafish embryos to low, non-embryotoxic levels of PCB126 did not affect larval behavior but caused changes in adult behavior (Glazer et al., 2016, NeuroToxicology 52:134-143). Zebrafish embryos were exposed to either vehicle (DMSO) or low concentrations of PCB126 (0.3, 0.6, 1.2 nM) for 20 h (4–24 h post fertilization), and then reared to adulthood in clean water. Locomotor activity of the larvae at 7 and 14 days post fertilization (dpf) was not affected by PCB126. In contrast, adult fish (4 months old) tested in novel tank and shoaling assays showed impaired habituation to a novel environment. In order to investigate the underlying molecular basis of these phenotypes, we determined the transcriptional profiles in whole embryos (48 hpf), larvae (5 dpf) and adult brain (4 mo) using strand-specific RNA-sequencing. Our results show that 0.3 nM PCB126 exposure induced cyp1a transcript levels 12.5-fold in 48-hpf embryos but there was no induction in 5-dpf larvae, suggesting transient activation of aryl hydrocarbon receptor during early development. No significant induction of cyp1a was observed in the brains of adults exposed as embryos to PCB126. However, we observed significant changes in gene expression profiles in the adult brain samples. A total of 2209 and 1628 genes were differentially expressed in 0.3 nM and 1.2 nM PCB126-exposed groups, respectively. KEGG pathway analysis of differentially expressed genes in the brain suggest enrichment of genes involved in oxidative phosphorylation, neurodegenerative diseases, circadian rhythm and calcium signaling pathways. We are currently investigating the role of these genes in altered behavior observed in the adults. Overall, our results suggest that PCB exposure during sensitive periods of early development alters normal development of the brain by reprogramming gene expression patterns. [Funded by NIH P01ES021923 and NSF OCE-1314642]. Overall design: A total of 24 samples were sequenced. It includes 3 different time points and 2 or 3 different treatments. Each treatment had 3 biological replicates.
Early Life Exposure to Low Levels of AHR Agonist PCB126 (3,3',4,4',5-Pentachlorobiphenyl) Reprograms Gene Expression in Adult Brain.
No sample metadata fields
View SamplesProspective isolation is critical to understand the cellular and molecular aspects of stem cell heterogeneity. Here we identify the cell surface antigen CD9 as a novel positive marker that provides a simple alternative for hematopoietic stem cell-isolation at high purity Overall design: mRNA profiles of LT and ST HSCs
The tetraspanin CD9 affords high-purity capture of all murine hematopoietic stem cells.
Subject
View SamplesType I IFNs are implicated in the pathophysiology of systemic sclerosis (SSc). Recently, a Phase I open-label trial was conducted with an anti-IFNAR1 receptor antibody (anifrolumab) in adult SSc patients. In this study, we aim to assess the downstream effects of anifrolumab and elucidate the role of type I IFN in SSc. Serum proteins and extracellular matrix (ECM) markers were measured in relation to IFN pathway activation status and SSc disease activity. Our results demonstrated a robust overexpression of multiple serum proteins in SSc patients, particularly those with an elevated baseline type I IFN gene signature. Anifrolumab administration was associated with significant downregulation of T cellassociated proteins and upregulation of type III collagen degradation marker. Whole-blood and skin microarray results also indicated the inhibition of T cell receptor and ECMrelated transcripts by anifrolumab. In summary, our study demonstrates suppressive effects of anifrolumab on T cell activation and collagen accumulation through which tissue fibrosis may be reduced in SSc patients. The relationship between these peripheral markers and the clinical response to anifrolumab may be examined in larger double-blind, placebo-controlled trials.
Suppression of T Cell Activation and Collagen Accumulation by an Anti-IFNAR1 mAb, Anifrolumab, in Adult Patients with Systemic Sclerosis.
Specimen part, Disease, Disease stage, Time
View SamplesSkeletal muscle mass is an important determinant of whole-body glucose disposal. We here show that mice (M-PDK1KO mice) with skeletal muscle–specific deficiency of 3'-phosphoinositide–dependent kinase 1 (PDK1), a key component of the phosphatidylinositol 3-kinase (PI3K) signaling pathway, manifest a reduced skeletal muscle mass under the static condition as well as impairment of exercise load–induced muscle hypertrophy.
Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load.
Sex, Specimen part
View SamplesOverall goal: To elucidate the endothelial-specific role of Gata4 signaling in endothelial maturation and vascular maintenance. Purpose of analysis: To generate a transcriptional profile of Gata4-deficient endothelial cells in the adult myocardium under homeostatic conditions. Overall design: Experimental structure: Transcriptional profile generated using RNAseq and differential gene expression analyses of endothelial cells lacking Gata4 isolated from healthy hearts.
Gata4-Dependent Differentiation of c-Kit<sup>+</sup>-Derived Endothelial Cells Underlies Artefactual Cardiomyocyte Regeneration in the Heart.
Specimen part, Subject
View Samples