Tolerogenic dendritic cells (DCs) induce regulatory T-cells and dampen pathogenic T-cell responses. Hereby, they have gained interest as a therapeutic target in the combat against autoimmune diseases. In this study we investigated whether tolerogenic DCs are induced by the phytonutrient carvacrol, a molecule with known anti-inflammatory properties. In this study, bone marrow derived DCs were treated with carvacrol in combination with thermal stress. Gene expression profiles were obtained by microarray analysis to test for an induced tolerogenic phenotype. To investigate the tolerogenic properties of treated DCs in vivo, T-cell anergy or the induction of a regulatory T-cell phenotype was studied in antigen specific T-cells. Finally, treated DCs were tested by transfer into an experimental arthritis model.
Tolerogenic dendritic cells that inhibit autoimmune arthritis can be induced by a combination of carvacrol and thermal stress.
Sex, Age, Specimen part, Compound
View SamplesWe treated Arabidopsis seedlings with chitosan and carried out a transcript profiling analysis (GeneChip microarrays) in order to identify genes and transcription factors regulated by chitosan. The results showed that jasmonate and defense responsive genes, camalexin and lignin biosynthetic genes were among genes up-regulated by chitosan. Several transcription factors are also strongly induced by chitosan.
Transcript profiling of chitosan-treated Arabidopsis seedlings.
Age, Treatment
View SamplesAlveolar macrophages are the first line of defense against pathogens in the lungs of all mammalian species and therefore may constitute an appropriate therapeutic target cell in the treatment and prevention of opportunistic airway infections. Analysis of alveolar macrophages from several species has revealed a unique cellular phenotype and transcriptome, presumably linked to their distinct airway environment and function in host defense. The current study extends these findings to the horse.
Comparative transcriptome analysis of equine alveolar macrophages.
Treatment
View SamplesMouse bone marrow-derived macrophages (BMDM) grown in macrophage colony-stimulating factor (CSF-1) have been used widely in studies of macrophage biology and the response to toll-like receptor agonists. We investigated whether similar cells could be derived from the domestic pig. Cultivation of pig bone marrow cells for 5-7 days in presence of rhCSF-1 generated a pure population of BMDM that expressed the usual macrophage markers (CD14, CD16, CD163, CD172a), are potent phagocytic cells and produced tumor necrosis factor (TNF) in response to lipopolysaccharide (LPS). Bone marrow cells could be stored frozen and thawed, providing a renewable resource.
Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide.
Sex, Specimen part, Time
View SamplesThe objective of this study is to determine the molecular mechanisms of PMCol-induced hapatotoxicity using microarray
Toxicogenomics and metabolomics of pentamethylchromanol (PMCol)-induced hepatotoxicity.
Specimen part, Treatment, Time
View SamplesWe used arrays to examine the overall transcriptional differences between WT K-12 E. coli, and EHEC 86-24 and their corresponding QseD (yjiE) mutants.
The LysR-type transcriptional regulator QseD alters type three secretion in enterohemorrhagic Escherichia coli and motility in K-12 Escherichia coli.
No sample metadata fields
View SamplesLIN28 is a conserved RNA binding protein implicated in pluripotency, reprogramming and oncogenesis. Previously shown to act primarily by blocking let-7 microRNA (miRNA) biogenesis, here we elucidate distinct roles of LIN28 regulation via its direct messenger RNA (mRNA) targets. Through cross-linking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq) in human embryonic stem cells and somatic cells expressing exogenous LIN28, we have defined discrete LIN28 binding sites in a quarter of human transcripts. These sites revealed that LIN28 binds to GGAGA sequences enriched within loop structures in mRNAs, reminiscent of its interaction with let-7 miRNA precursors. Among LIN28 mRNA targets, we found evidence for LIN28 autoregulation and also direct but differing effects on the protein abundance of splicing regulators in somatic and pluripotent stem cells. Splicing-sensitive microarrays demonstrated that exogenous LIN28 expression causes widespread downstream alternative splicing changes. These findings identify important regulatory functions of LIN28 via direct mRNA interactions. Overall design: CLIP-seq for LIN28-V5 in stable human Flp-In-293 cells, and LIN28 in hES cells; strand-specific mRNA-seq for uninfected, control KD, and LIN28 KD human H9 ES cells; and strand-specific smallRNA-seq for uninfected, control KD, and LIN28 KD human H9 ES cells.
LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance.
Cell line, Treatment, Subject
View SamplesMating triggers physiological and behavioral changes in females.
Mating induces an immune response and developmental switch in the Drosophila oviduct.
No sample metadata fields
View SamplesRheumatoid arthritis (RA) leads to progressive destruction of articular structures. Despite recent progress in controlling inflammation and pain, little cartilage repair has yet been observed. This in vitro study aims to determine the role of chondrocytes in RA-related cartilage destruction and antirheumatic drug-related regenerative processes. Human chondrocytes were three-dimensionally cultured in alginate beads. To determine the RA-induced gene expression pattern, human chondrocytes were stimulated with supernatant of RA synovial fibroblasts (RASF) and normal donor synovial fibroblasts (NDSF), respectively. To examine antirheumatic drug response signatures, human chondrocytes were stimulated with supernatant of RASF that have been treated with disease-modifying antirheumatic drugs (DMARD; azathioprine, sodium aurothiomalate, chloroquine phosphate, methotrexate), non-steroidal anti-inflammatory drugs (NSAID; piroxicam, diclofenac) or steroidal anti-inflammatory drugs (SAID; methylprednisolone, prednisolone). Genome-wide expression profiling with oligonucleotide microarrays was used to determine differentially expressed genes. Real-time RT-PCR and ELISA were performed for validation of microarray data. Following antirheumatic treatment, microarray analysis disclosed a reverted expression of 94 RA-induced chondrocyte genes involved in inflammation/NF-B signalling, cytokine/chemokine activity, immune response, proliferation/differentiation and matrix remodelling. Hierarchical clustering analysis showed that treatment of RASF with the DMARD azathioprine, gold sodium thiomalate and methotrexate resulted in chondrocyte gene expression signatures that were closely related to the healthy pattern. Treatment with the SAID methylprednisolone and prednisolone strongly reverted the RA-related chondrocyte gene expression, in particular the expression of genes involved in inflammation/NF-B and cytokine/chemokine activity. The NSAID piroxicam and diclofenac and the DMARD chloroquine phosphate had only moderate to marginal effects. Pathway analysis determined major mechanisms of drug action, for example pathways of cytokine-cytokine receptor interaction, TGF-/TLR/Jak-STAT signalling and ECM-receptor interaction were targeted. This in vitro study provides a comprehensive molecular insight into the antirheumatic drug response signatures in human chondrocytes, thereby revealing potential molecular targets, pathways and mechanisms of drug action involved in chondrocyte regeneration. Thus, the present study may contribute to the development of novel therapeutic chondro-protective compounds and strategies.
Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration.
No sample metadata fields
View SamplesTo study the gene expression profile of salivary glands with varying degrees of inflammation in Sjogren's and non Sjogren's patients
Chitinases in the salivary glands and circulation of patients with Sjögren's syndrome: macrophage harbingers of disease severity.
Specimen part, Disease
View Samples