refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 213 results
Sort by

Filters

Technology

Platform

accession-icon GSE12332
Mating induces an immune response and developmental switch in the Drosophila oviduct
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Mating triggers physiological and behavioral changes in females.

Publication Title

Mating induces an immune response and developmental switch in the Drosophila oviduct.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP014671
LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance (HTS)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer, Illumina Genome Analyzer II

Description

LIN28 is a conserved RNA binding protein implicated in pluripotency, reprogramming and oncogenesis. Previously shown to act primarily by blocking let-7 microRNA (miRNA) biogenesis, here we elucidate distinct roles of LIN28 regulation via its direct messenger RNA (mRNA) targets. Through cross-linking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq) in human embryonic stem cells and somatic cells expressing exogenous LIN28, we have defined discrete LIN28 binding sites in a quarter of human transcripts. These sites revealed that LIN28 binds to GGAGA sequences enriched within loop structures in mRNAs, reminiscent of its interaction with let-7 miRNA precursors. Among LIN28 mRNA targets, we found evidence for LIN28 autoregulation and also direct but differing effects on the protein abundance of splicing regulators in somatic and pluripotent stem cells. Splicing-sensitive microarrays demonstrated that exogenous LIN28 expression causes widespread downstream alternative splicing changes. These findings identify important regulatory functions of LIN28 via direct mRNA interactions. Overall design: CLIP-seq for LIN28-V5 in stable human Flp-In-293 cells, and LIN28 in hES cells; strand-specific mRNA-seq for uninfected, control KD, and LIN28 KD human H9 ES cells; and strand-specific smallRNA-seq for uninfected, control KD, and LIN28 KD human H9 ES cells.

Publication Title

LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE20413
EHEC and K-12 E. coli QseD mutant analysis
  • organism-icon Escherichia coli, Escherichia coli k-12
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

We used arrays to examine the overall transcriptional differences between WT K-12 E. coli, and EHEC 86-24 and their corresponding QseD (yjiE) mutants.

Publication Title

The LysR-type transcriptional regulator QseD alters type three secretion in enterohemorrhagic Escherichia coli and motility in K-12 Escherichia coli.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP069789
Distinct and shared functions of ALS-associated TDP-43, FUS, and TAF15 revealed by comprehensive multi-system integrative analyses [RNA-Seq_Stability]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

TDP-43, FUS, and TAF15 are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We integrate CLIP-seq and RNA Bind-N-Seq technologies to discover that TAF15 binds to ~4,900 RNAs enriched for GGUA motifs. In the mouse brain, TAF15 and FUS, but not TDP-43, exhibit strikingly similar RNA binding profiles, yet they alter the expression of distinct mRNA populations upon their individual depletions. TAF15 has a minimal role in alternative splicing and instead affects RNA turnover, consistent with an enrichment of TAF15 binding sites in 3’ untranslated regions. In human stem cell-derived motor neurons, loss of both TAF15 and FUS affected mRNAs distinct from those altered by loss of either protein alone, revealing redundant roles for TAF15 and FUS in maintaining mRNA levels. Furthermore, concomitant rather than individual depletion of TAF15 and FUS more closely resembles RNA profiles of motor neurons derived from FUS R521G ALS patients or from late-stage, sporadic ALS patients. Our study reveals convergent and divergent mechanisms by which FUS, TAF15 and TDP-43 affects RNA metabolism in neurological disease. Overall design: RNA-seq, CLIP-seq and arrays in mouse and human against TAF15 knockdowns This Series represents RNA-seq sample(s).

Publication Title

Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP069787
Distinct and shared functions of ALS-associated TDP-43, FUS, and TAF15 revealed by comprehensive multi-system integrative analyses [RNA-Seq_human]
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

TDP-43, FUS, and TAF15 are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We integrate CLIP-seq and RNA Bind-N-Seq technologies to discover that TAF15 binds to ~4,900 RNAs enriched for GGUA motifs. In the mouse brain, TAF15 and FUS, but not TDP-43, exhibit strikingly similar RNA binding profiles, yet they alter the expression of distinct mRNA populations upon their individual depletions. TAF15 has a minimal role in alternative splicing and instead affects RNA turnover, consistent with an enrichment of TAF15 binding sites in 3’ untranslated regions. In human stem cell-derived motor neurons, loss of both TAF15 and FUS affected mRNAs distinct from those altered by loss of either protein alone, revealing redundant roles for TAF15 and FUS in maintaining mRNA levels. Furthermore, concomitant rather than individual depletion of TAF15 and FUS more closely resembles RNA profiles of motor neurons derived from FUS R521G ALS patients or from late-stage, sporadic ALS patients. Our study reveals convergent and divergent mechanisms by which FUS, TAF15 and TDP-43 affects RNA metabolism in neurological disease. Overall design: RNA-seq, CLIP-seq and arrays in mouse and human against TAF15 knockdowns This Series represents RNA-seq sample(s).

Publication Title

Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP069788
Distinct and shared functions of ALS-associated TDP-43, FUS, and TAF15 revealed by comprehensive multi-system integrative analyses [RNA-Seq_mouse]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

TDP-43, FUS, and TAF15 are implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We integrate CLIP-seq and RNA Bind-N-Seq technologies to discover that TAF15 binds to ~4,900 RNAs enriched for GGUA motifs. In the mouse brain, TAF15 and FUS, but not TDP-43, exhibit strikingly similar RNA binding profiles, yet they alter the expression of distinct mRNA populations upon their individual depletions. TAF15 has a minimal role in alternative splicing and instead affects RNA turnover, consistent with an enrichment of TAF15 binding sites in 3’ untranslated regions. In human stem cell-derived motor neurons, loss of both TAF15 and FUS affected mRNAs distinct from those altered by loss of either protein alone, revealing redundant roles for TAF15 and FUS in maintaining mRNA levels. Furthermore, concomitant rather than individual depletion of TAF15 and FUS more closely resembles RNA profiles of motor neurons derived from FUS R521G ALS patients or from late-stage, sporadic ALS patients. Our study reveals convergent and divergent mechanisms by which FUS, TAF15 and TDP-43 affects RNA metabolism in neurological disease. Overall design: RNA-seq, CLIP-seq and arrays in mouse and human against TAF15 knockdowns This Series represents RNA-seq sample(s).

Publication Title

Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE69871
Expression data from lipopolysaccharide treated and untreated equine alveolar macrophages and basal comparison with peritoneal macrophages
  • organism-icon Equus caballus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Equus caballus Gene 1.0 ST Array (equgene10st)

Description

Alveolar macrophages are the first line of defense against pathogens in the lungs of all mammalian species and therefore may constitute an appropriate therapeutic target cell in the treatment and prevention of opportunistic airway infections. Analysis of alveolar macrophages from several species has revealed a unique cellular phenotype and transcriptome, presumably linked to their distinct airway environment and function in host defense. The current study extends these findings to the horse.

Publication Title

Comparative transcriptome analysis of equine alveolar macrophages.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE86464
HNRNPA2B1 regulates alternative RNA processing in the nervous system and accumulates in granules in ALS IPSC-derived motor neurons
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 63 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20), Illumina HiSeq 2000

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System.

Sample Metadata Fields

Age, Specimen part, Disease, Cell line, Treatment

View Samples
accession-icon GSE86462
HNRNPA2B1 regulates alternative RNA processing in the nervous system and accumulates in granules in ALS IPSC-derived motor neurons [hnRNPA2B1_Arrays_human_iPSC_MN_Stress]
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

HnRNPA2B1 encodes an RNA binding protein associated with neurodegenerative disorders. However, its function in the nervous system is unclear. Transcriptome-wide cross-linking and immunoprecipitation in mouse spinal cord discover UAGG motifs enriched within ~2,500 hnRNP A2/B1 binding sites and an unexpected role for hnRNP A2/B1 in alternative polyadenylation. Loss of hnRNP A2/B1 results in alternative splicing, including skipping of an exon in amyotrophic lateral sclerosis (ALS)-associated D-amino acid oxidase (DAO) that reduces D-serine metabolism. Inclusion of the DAO exon is also reduced in transgenic ALS mice models. ALS-associated hnRNP A2/B1 D290V mutant patient fibroblasts and motor neurons differentiated from induced pluripotent stem cells demonstrate gain-of-mutant-dependent splicing differences. Mutant motor neurons also exhibit increased hnRNP A2/B1 localization to cytoplasmic granules during stress, which are abrogated by a small molecule CA43. Our findings and cellular resource identify RNA networks affected in loss of normal and mutated hnRNP A2/B1 with broad relevance to neurodegeneration.

Publication Title

Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE86223
HNRNPA2B1 regulates alternative RNA processing in the nervous system and accumulates in granules in ALS IPSC-derived motor neurons [hnRNPA2B1_Arrays_human_iPSC_MN_ASO]
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

HnRNPA2B1 encodes an RNA binding protein associated with neurodegenerative disorders. However, its function in the nervous system is unclear. Transcriptome-wide cross-linking and immunoprecipitation in mouse spinal cord discover UAGG motifs enriched within ~2,500 hnRNP A2/B1 binding sites and an unexpected role for hnRNP A2/B1 in alternative polyadenylation. Loss of hnRNP A2/B1 results in alternative splicing, including skipping of an exon in amyotrophic lateral sclerosis (ALS)-associated D-amino acid oxidase (DAO) that reduces D-serine metabolism. Inclusion of the DAO exon is also reduced in transgenic ALS mice models. ALS-associated hnRNP A2/B1 D290V mutant patient fibroblasts and motor neurons differentiated from induced pluripotent stem cells demonstrate gain-of-mutant-dependent splicing differences. Mutant motor neurons also exhibit increased hnRNP A2/B1 localization to cytoplasmic granules during stress, which are abrogated by a small molecule CA43. Our findings and cellular resource identify RNA networks affected in loss of normal and mutated hnRNP A2/B1 with broad relevance to neurodegeneration.

Publication Title

Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact