This SuperSeries is composed of the SubSeries listed below.
MYBL2 is a sub-haploinsufficient tumor suppressor gene in myeloid malignancy.
Specimen part, Disease, Disease stage
View SamplesA dosage-dependent role for tumor suppressor genes in the initiation of myeloid malignancies remains controversial. Here we show that MYBL2 is expressed at sharply reduced levels in CD34+ cells from most patients with myelodysplastic syndrome (MDS; 65%; n=26). In a murine competitive reconstitution model, Mybl2 knockdown by RNAi to 20-30% of normal levels in multipotent hematopoietic progenitors led to clonal dominance by these sub-haploinsufficient cells, affecting all blood cell lineages. By 6 months post-transplantation, the reconstituted mice had developed a myeloproliferative/myelodysplastic disorder originating from the cells with aberrantly reduced Mybl2 expression. Thus, downregulation of MYBL2 activity to levels below those predicted by classical haploinsufficiency drives the clonal expansion of hematopoietic progenitors in a large fraction of human MDS cases.
MYBL2 is a sub-haploinsufficient tumor suppressor gene in myeloid malignancy.
Specimen part, Disease, Disease stage
View SamplesA dosage-dependent role for tumor suppressor genes in the initiation of myeloid malignancies remains controversial. Here we show that MYBL2 is expressed at sharply reduced levels in CD34+ cells from most patients with myelodysplastic syndrome (MDS; 65%; n=26). In a murine competitive reconstitution model, Mybl2 knockdown by RNAi to 20-30% of normal levels in multipotent hematopoietic progenitors led to clonal dominance by these sub-haploinsufficient cells, affecting all blood cell lineages. By 6 months post-transplantation, the reconstituted mice had developed a myeloproliferative/myelodysplastic disorder originating from the cells with aberrantly reduced Mybl2 expression. Thus, downregulation of MYBL2 activity to levels below those predicted by classical haploinsufficiency drives the clonal expansion of hematopoietic progenitors in a large fraction of human MDS cases.
MYBL2 is a sub-haploinsufficient tumor suppressor gene in myeloid malignancy.
Specimen part
View SamplesThe small molecule ONC201 is toxic in vitro to multiple cell lines and primary tumor samples of mantle cell lymphoma (MCL) and acute myeloid leukemia, even ones with unfavorable genetic features (notably including TP53 inactivation) or acquired resistance to other agents. Because the mechanism of action in these malignant hematologic cells appeared to differ from that in solid tumors, we performed gene expression profiling (GEP) studies on MCL lines treated with ONC201 and other agents with known mechanisms of action. Treatment of JeKo-1 cells with 5 uM ONC201 showed consistent and progressive increases or decreases over time in two sets of genes: upregulated genes, which implicated an ER stress response and mTOR pathway inhibition, and downregulated genes, which implicated reduced proliferation. These implicated effects of ONC201 were validated by confirmatory experiments. Similar GEP changes were observed in ONC201-naive Z138 cells after 24 hr of ONC201 treatment, but were not seen in Z138 cells made ONC201-resistant by chronic exposure. Finally, the GEP effects of ONC201 in JeKo-1 cells were mimicked by the ER stress inducer tunicamycin, but not by the direct MTOR inhibition rapamycin, further confirming an ER stress response and suggesting that inhibition of the mTOR pathway was by an indirect mechanism.
ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome.
Sex, Specimen part
View SamplesTelomere dysfunctional CMP/GMP have deregulated pathways that are associated with DNA damage signaling
Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome.
Sex, Specimen part
View SamplesGenome-wide approach to identify the cell-autonomous role of Snf2h in lens fiber cell terminal differentiation. Differential gene expression was analyzed in Snf2h lens-conditional knockout and wildtype newborn mouse eyeballs, with subsequent comparison of this data with the Brg1 lens-conditional knockout mouse eyes expression data (GSE25168).
Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation.
No sample metadata fields
View SamplesAbstract
Gene expression patterns define key transcriptional events in cell-cycle regulation by cAMP and protein kinase A.
No sample metadata fields
View SamplesRhoGDIbeta (ARHGDIB) is often expressed in tumor cells. It negatively regulates Rho-GTPases, but may have other functions as well. To analyze its effect on gene expression, RhoGDIbeta was suppressed by RNA interference in MDA-MB-231 breast cancer cells and changes in gene expression monitored by cDNA microarrays.
Cyclooxygenase-2 is a target gene of rho GDP dissociation inhibitor beta in breast cancer cells.
No sample metadata fields
View SamplesThis study addresses long-term effects of clinically relevant regimens of radiation in human glioma stem cells. Our investigations reveal a strikingly diverse spectrum of changes in cell behavior, gene expression patterns and tumor-propagating capacities evoked by radiation in different types of glioma stem cells. Evidence is provided that degree of cellular plasticity but not the propensity to self-renew is an important factor influencing radiation-induced changes in the tumor-propagating capacity of glioma stem cells. Gene expression analyses indicate that paralell transcriptomic responses to radiation underlie similarity of clinically relevant cellular outcomes such as the ability to promote tumor growth after radiation. Our findings underscore the importance of longitudinal characterizations of molecular and cellular responses evoked by cytotoxic treatrments in glioma stem cells.
Diversity of Clinically Relevant Outcomes Resulting from Hypofractionated Radiation in Human Glioma Stem Cells Mirrors Distinct Patterns of Transcriptomic Changes.
Treatment
View Samples