PIL5 is a key negative regulator of phytochrome mediated seed germination and PIL5 protein is degraded by red light irradiation through phytochrome. The microarray aimed to find various red light-regulated genes and PIL5-regulated genes in the imbibed seeds.
Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis.
No sample metadata fields
View SamplesExpression data after flg22 treatment on leaf discs in Col-0, 35S:AFB1 and 35S:miR393
The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates.
Specimen part
View SamplesWheat seed germination and seminal root growth can be inhibited by treatment with exogenous ABA
Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling.
Specimen part
View SamplesExpression data 24hrs after PstDC3000 inoculation in Col-0, 35S:AFB1 and 35S:miR393.
The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates.
Specimen part
View SamplesWe have identified the causal genes, which is MYB36, of ionome mutants.
The MYB36 transcription factor orchestrates Casparian strip formation.
Specimen part
View SamplesRNA sequencing was performed to examine differential gene expression profiles in the ring gland of PG-specific Séance RNAi animals versus control. Overall design: Drosophila larvae with PG-specific knockdown of Séance and control animals were carefully staged at the larval L2/L3 molt. Ring glands were dissected at 44 hours L3. RNA isolated from ring glands were subject to RNA sequencing. Differential gene expression profiles were compared between control and RNAi animals.
Cooperative Control of Ecdysone Biosynthesis in <i>Drosophila</i> by Transcription Factors Séance, Ouija Board, and Molting Defective.
Specimen part, Subject
View SamplesTranscription termination and mRNA export from the nucleus are closely regulated and coordinated processes. Nuclear export factors are recruited to actively transcribed genes through their interactions with protein complexes associated with transcription and co-transcriptional pre-mRNA processing. We determine a new role for the kinase WNK1 in the cross-talk of transcription termination and mRNA export. WNK1 was previously attributed a cytoplasmic role as a regulator of ion transport. However, we now show a nuclear function for this kinase where it is required for efficient mRNA export along with the transcription termination factor PCF11. Finally, we identify the phosphorylation of the CID domain of PCF11 as an important step for the release of the mRNA from the transcription locus, thus allowing efficient mRNA export to the cytoplasm. Overall design: RNA from cytoplasmic and nuclear extracts of HeLa cells was obtained, upon depletion of WNK1 kinase or from control cells. Upon pA selection, libraries were generated and sequenced. A duplicate experiment was performed for each sample.
WNK1 kinase and the termination factor PCF11 connect nuclear mRNA export with transcription.
Cell line, Subject
View SamplesCellular reprogramming converts differentiated cells into induced pluripotent stem cells (iPSCs). However, this process is extremely inefficient, complicating mechanistic studies. Here, we identified and molecularly characterized rare, early intermediates poised to reprogram with up to 100% efficiency, without perturbing additional genes or pathways. Analysis of these cells uncovered transcription factors (e.g., Tfap2c, Bex2), which are critical for reprogramming but dispensable for pluripotency maintenance. Additionally, we observed striking patterns of chromatin hyperaccessibility at pluripotency loci, which preceded gene expression in poised intermediates. Finally, inspection of these hyperaccessible regions revealed a previously unappreciated early wave of DNA demethylation, which is uncoupled from de novo methylation of somatic regions late in reprogramming. Overall, our study underscores the importance of investigating the rare intermediates poised to produce iPSCs, provides novel insights into the mechanisms of reprogramming, and offers a valuable resource for the dissection of transcriptional and epigenetic dynamics intrinsic to cell fate change. Overall design: RNA-seq of reprogramming intermediates (11 cell types in triplicate).
Prospective Isolation of Poised iPSC Intermediates Reveals Principles of Cellular Reprogramming.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Global analysis of della direct targets in early gibberellin signaling in Arabidopsis.
No sample metadata fields
View SamplesThe aim of this study is to identify early DELLA protein-responsive genes using a Dexamethasone (DEX)-inducible system. Two transgenic lines were used: one induces the expression of a dominant, gibberellin non-responsive DELLA protein (rga-delta17); the other is a control line that carries the same vector, but lacks the rga-delta17 transgene. By comparing the gene expression changes in the line that expresses the rga-delta17 protein in the presence or absence of DEX it is possible to identify putative targets of DELLA proteins. An empty vector transgenic line was included in this study to identify genes that might be regulated by the DEX inducible system that are not dependent on the DELLA protein.
Global analysis of della direct targets in early gibberellin signaling in Arabidopsis.
No sample metadata fields
View Samples