There is massive destruction of transcripts during maturation of mouse oocytes. The objective of this project was to identify and characterize the transcripts that are degraded versus those that are stable during the transcriptionally silent germinal vesicle (GV)-stage to metaphase II (MII)-stage transition using the microarray approach. A system for oocyte transcript amplification using both internal and 3-poly(A) priming was utilized to minimize the impact of complex variations in transcript polyadenylation prevalent during this transition. Transcripts were identified and quantified using Affymetrix Mouse Genome 430 v2.0 GeneChip. The significantly changed and stable transcripts were analyzed using Ingenuity Pathways Analysis and GenMAPP/MAPPFinder to characterize the biological themes underlying global changes in oocyte transcripts during maturation. It was concluded that the destruction of transcripts during the GV to MII transition is a selective rather than promiscuous process in mouse oocytes. In general, transcripts involved in processes that are associated with meiotic arrest at the GV-stage and the progression of oocyte maturation, such as oxidative phosphorylation, energy production, and protein synthesis and metabolism, were dramatically degraded. In contrast, transcripts encoding participants in signaling pathways essential for maintaining the unique characteristics of the MII-arrested oocyte, such as those involved in protein kinase pathways, were the most prominent among those stables.
Selective degradation of transcripts during meiotic maturation of mouse oocytes.
No sample metadata fields
View SamplesAn unanticipated feature of the human neonatal CD4 T cell response is a robust capacity to produce CXCL8. However, this ''innate-like'' function dissipates with age and is scarce in the adult. Here, we investigated the fate of CD4+CXCL8+ cells and their transition into conventional adaptive T cells. We show that CXCL8 is imprinted on immature thymocytes prior to TCR signalling and is maintained in T cell committed thymic progenitors and recent thymic emigrants (RTEs) of adults as well as neonates. Hence, rather than being unique to neonates, CXCL8-producing CD4+ T cells decrease with age in humans (and in humanised mice) owing to the decline in thymic output, coupled with the cells' peripheral expansion. By cloning of CXCL8+CD4+ cells from cord blood, we were able to track effector function within daughter cells and demonstrate that these cells can convert to IFN-g producing cells. In sum, we provide direct evidence that 'innate like' CXCL8-producing CD4+ T cells emerge from the thymus and can transition into conventional adaptive Th1 cells Overall design: Examination of RNA-Seq count data from 96 single cells
Adaptive from Innate: Human IFN-γ<sup>+</sup>CD4<sup>+</sup> T Cells Can Arise Directly from CXCL8-Producing Recent Thymic Emigrants in Babies and Adults.
Specimen part, Subject
View SamplesIn zebrafish, parental exposure to ionizing radiation has been associated with effects in offspring, such as increased DNA damage and reactive oxygen species. Here, we assessed short (one month) and long term effects (one year) on gene expression in embryonic offspring (5.5 hours post fertilization) from zebrafish exposed during gametogenesis to gamma radiation (8.7 or 53 mGy/h for 27 days, total dose 5.2 or 31 Gy). One month after exposure, a global change in gene expression was observed in offspring from the 53 mGy/h group, followed by embryonic death at late gastrula, whereas offspring from the 8.7 mGy/h group was unaffected. One year after exposure, embryos from the 8.7 mGy/h group exhibited 2455(61.8% downregulated) differentially expressed genes. Overlaps in differentially expressed genes and enriched biological pathways were evident between the 53 mGy/h group one month and 8.7 mGy/h one year after exposure, which could be linked to effects in adults and offspring, such as DNA damage and lipid peroxidation. Interestingly, pathways between the two groups were oppositely regulated. Our results indicate latent effects following ionizing radiation exposure in parents that can be transmitted to offspring and warrants monitoring effects over subsequent generations. Overall design: One month after exposure, mRNA from F1 5.5 hpf embryos from parents exposed to 8.7 and 53 mGy/h gamma radiation during gametogenesis was sequenced on the Illumina 4000 platform with three replicas per treatment. One year after exposure, mRNA from F1 embryos from the same parents exposed to 8.7 mGy/h was sequenced with three biological replicates. In both cases, F1 embryos from non-exposed parents were used as control and mRNA sequenced in triplicates, taken at the same time points as the exposed samples.
Parental exposure to gamma radiation causes progressively altered transcriptomes linked to adverse effects in zebrafish offspring.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View SamplesEstrogens have been reported to activate several processes via membrane binding to either classic estrogen receptors (ERs) or GPR30. We have used either estradiol or BSA-conjugated estradiol in order to initiate membrane-initiated actions and ICI 172,780 (ICI) or G15 to explore ER- and GPR30-related transcription. Our results show that the majority of G15-inhibited transcription is depending on ERs, as it is also inhibited by ICI. However, a small number of transcripts, related to specific actions/pathways is either exclusively inhibited by G15, providing evidence about a specific GPR30 signature, or not inhibited by ICI or G15 suggesting the existence of another, yet unidentified estrogen receptor.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View Samplessmall RNA libraries from total RNA isolated from young adult animals Overall design: Wild-type and rem-1 mutant animals were used for RNA isolation. Regular libraries were made using adaptor ligations at both ends. In addition, librraies were made from oxidised and TAP treated RNA.
Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans.
Cell line, Subject
View Samplessmall RNA libraries from wild-type and Hen1 mutant testes were made with either polyA tailing (VASAGFPHen1minus/plus) or adapter ligation (Hen1Testis and WTTestis) and sequenced on an Illumina GAII platform. Overall design: RNA was isolated from total testis tissue of both Hen1 wildtype and Hen1 mutant animals. After size selection from gel, the small RNA libraries wre made.
Hen1 is required for oocyte development and piRNA stability in zebrafish.
No sample metadata fields
View Samples