Multiple signaling pathways, structural proteins and transcription factors are involved in regulation of endothelial barrier function. The Forkhead protein FOXF1 is a key transcriptional regulator of lung embryonic development, and we use a conditional knockout approach to examine the role of FOXF1 in adult lung homeostasis and lung injury and repair. Tamoxifen-regulated deletion of both Foxf1 alleles in endothelial cells of adult mice (Pdgfb-iCreER/Foxf1 caused lung inflammation and edema, leading to respiratory insuffency and uniform mortality. Deletion of a single foxf1 allele was sufficient to increase susceptibility of heterozygous mice to acute lung injury. FOXF1 abundance was decreased in pulmonary endothelial cells of human patients with acute lung injury. Gene expression analysis of pulmonary endothelial cells of FOXF1 deletion indicated reduced expression for genes critical for maintance and regulation of adherens junctions. FOXF1 knockdown in vitro and in vivo disrupted adherens junctions, increased lung endothelial permeability, and the abundance of mRNA and protein for sphingosine 1 phosphate receptor 1 (S1PR1), a key regulator of endothelial barrier function. Chromatin immunoprecipitation and luciferase reporter assay demonstrated that FOXF1 directly bound to and induced the tanscriptional activity of the S1pr1 promoter. Pharmacological administratiion of S1P to injured pdgfb-iCreER/Foxf1 mice restored endothelial barrier function, decreased lung edema and improved survival. Thus, FOXF1 promotes normal lung homeostasis and lung repair, at least in part, by enhancing endothelial barrier function through transcriptional activation of the S1P/S1PR1/ signaling pathway. Overall design: RNA was isolated and pooled from the lungs of multiple mice with either the Foxf1 floxed alleles alone or Pdgfb-iCreER Foxf1 floxed mice.
FOXF1 maintains endothelial barrier function and prevents edema after lung injury.
Specimen part, Subject
View SamplesHepatic fibrosis is the common end stage to a variety of chronic liver injuries and is characterized by an excessive deposition of extracellular matrix (ECM), which disrupts the liver architecture and impairs liver function. The fibrous lesions are produced by myofibroblasts, which differentiate from hepatic stellate cells (HSC). The myofibroblasts transcriptional networks remain poorly characterized. Previous studies have shown that the Forkhead box F1 (FOXF1) transcription factor is expressed in HSCs and stimulates their activation during acute liver injury; however, the role of FOXF1 in the progression of hepatic fibrosis is unknown. In the present study, we generated aSMACreER;Foxf1fl/fl mice to conditionally inactivate Foxf1 in myofibroblasts during carbon tetrachloride-mediated liver fibrosis. Foxf1 deletion increased collagen depositions and disrupted liver architecture. Timp2 expression was significantly increased in Foxf1-deficient mice while MMP9 activity was reduced. RNA sequencing of purified liver myofibroblasts demonstrated that FOXF1 inhibits expression of pro-fibrotic genes, Col1a2, Col5a2, and Mmp2 in fibrotic livers and binds to active repressors located in promotors and introns of these genes. Overexpression of FOXF1 inhibits Col1a2, Col5a2, and MMP2 in primary murine HSCs in vitro. Altogether, FOXF1 prevents aberrant ECM depositions during hepatic fibrosis by repressing pro-fibrotic gene transcription in myofibroblasts and HSCs. Overall design: RNAseq on isolated hepatic stromal cells from Foxf1 fl/fl and aSMACreER;Foxf1 fl/fl mice after 5 weeks of carbon tetrachloride-induced liver injury.
The Forkhead box F1 transcription factor inhibits collagen deposition and accumulation of myofibroblasts during liver fibrosis.
Specimen part, Cell line, Subject
View SamplesTranscription factor FoxM1 is expressed in proliferating cells, and its expression is critical for cell proliferation in embryos and tumors. FoxM1 regulates a multi-gene transcriptional network for cell cycle regulation.
Forkhead box M1 transcriptional factor is required for smooth muscle cells during embryonic development of blood vessels and esophagus.
Specimen part
View SamplesMycobacterium avium infection in mice induces granuloma necrosis in the lung which is dependent on IFNg. IRF1 is a transcription factor activated by IFNg signaling. The effect of IFNg and IRF1 on immunopathology and transcriptional changes in the lung were analysed using gene-deficient mice.
Mycobacteria-induced granuloma necrosis depends on IRF-1.
No sample metadata fields
View SamplesThe first embryonic cell divisions rely on maternally stored mRNA and proteins. The zygotic genome is initially transcriptionally silenced and activated later in a process called zygotic genome activation (ZGA). ZGA in any species is still a poorly understood process; the timing of transcription onset is controversial and the identity of the first transcribed genes unclear. Zebrafish, Danio rerio, is a rapidly developing vertebrate model, which is accessible to experimentation and global studies before, during and after ZGA. Overall design: To accurately determine the onset of ZGA and to identify the first transcripts in zebrafish, we developed a metabolic labeling method, utilizing the ribonucleotide analog 4-thio-UTP, which allows efficient and specific affinity purification of newly transcribed RNA. Using deep sequencing, we characterized the onset of transcription in zebrafish embryos at 128-, 256-, and 512-cell stages. We identified 592 nuclear-encoded zygotically transcribed genes, comprising 670 transcript isoforms. Mitochondrial genomes were highly transcribed at all time points. Further, bioinformatic analysis revealed an enrichment of transcription factors and miRNAs among the newly transcribed genes, suggesting mechanistic roles for the early genes that are required to activate subsequent gene expression programs in development. Interestingly, analysis of gene-architecture revealed that zygotically transcribed genes are often intronless and short, reducing transcription and processing time of the transcript. The newly generated dataset enabled us to compare zygotically transcribed genes over a broad phylogenetic distance with fly and mouse early zygotic genes. This analysis revealed that short gene length is a common characteristic for early zygotically expressed genes. However, we detected a poor level of overlap for shared orthologs.
The earliest transcribed zygotic genes are short, newly evolved, and different across species.
No sample metadata fields
View SamplesDendritic cells are the initiators of the adaptive immune response, therefore its gene expression allow us to predict the responses to vaccination. We used bone marrow derived dendritic cells (BMDC) to analyze the gene expression that result from the exposure to adjuvants. We use model antigen OVA and cyclic di-AMP (CDA) as an adjuvant in order to characterize the genes involved in the activation of dendritic cells by CDA alone or when the antigen is present.
Type I IFN and not TNF, is Essential for Cyclic Di-nucleotide-elicited CTL by a Cytosolic Cross-presentation Pathway.
Treatment, Time
View SamplesPurpose: The purpose of this study is to compare the transcriptome expression profiles of E13.5 Foxf2-/-;Osr2RFP/+ and control palatal mesenchyme by using RNA-seq analysis. Methods: Foxf2+/- female mice were crossed with Foxf2+/-;Osr2RFP/+ male mice.The embryos were harvested at E13.5. The pair of palatal shelves were dissected from each Osr2-RFP+ embryo. The RFP+ palatal mesenchyme cells were isolated by using fluorescence-activated cell sorting (FACS). RNA-seq analysis was carried out using the FACS-isolated palatal mesenchyme from Foxf2-/-;Osr2RFP/+, Foxf2+/-;Osr2RFP/+ and Osr2RFP/+embryos, respectively. Overall design: The transcriptome expression profiles of E13.5 control and Foxf2-/-Osr2RFP/+ palatal mesenchyme by using RNA-seq analysis, in duplicates, using Illumina HisEq 2000.
A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Time-course analysis of the effect of embedded metal on skeletal muscle gene expression.
Sex, Specimen part, Treatment, Time
View SamplesAs a consequence of military operations, many veterans suffer from penetrating wounds and long-term retention of military grade heavy metal fragments. Fragments vary in size and location, and complete surgical removal may not be feasible or beneficial in all cases. Increasing evidence suggests retention of heavy metal fragments may have serious biological implications, including increased risks for malignant transformation. Previous studies assessed the tumorigenic effects of metal alloys in rats, demonstrating combinations of metals are sufficient to induce tumor formation after prolonged retention in skeletal muscle tissue. In this study, we analyzed transcriptional changes in skeletal muscle tissue in response to eight different military-relevant pure metals over 12 months. We found that most transcriptional changes occur at 1 and 3 months after metal pellets are embedded in skeletal muscle and these effects resolve at 6 and 12 months. We also report significant immunogenic effects of nickel and cobalt and suppressive effects of lead and depleted uranium on gene expression. Overall, skeletal muscle exhibits a remarkable capacity to adapt to and recover from internalized metal fragments; however, the cellular response to chronic exposure may be restricted to the metal-tissue interface. This data suggests that unless affected regions are specifically captured by biopsy, it would be difficult to reliably detect changes in muscle gene expression that would be indicative of long-term adverse health outcomes.
Time-course analysis of the effect of embedded metal on skeletal muscle gene expression.
Sex, Specimen part, Treatment, Time
View SamplesMurine Cytomegalovirus (MCMV) infection leads to the activation of various immune cells, including dendritic cells (DCs) and Natural Killer (NK) cells. This activation is partly driven by innate cytokines including IFN-I, which are induced early after infection. The objective was to address the role of different innate cytokines in shaping DC subsets and NK cell responses, in particular the role of cell intrinsic responses to IFN-I.
Differential responses of immune cells to type I interferon contribute to host resistance to viral infection.
Specimen part
View Samples