Objective: We hypothesized that type 1 diabetes (T1D) is accompanied by changes in gene expression in peripheral blood mononuclear cells (PBMCs) due to dysregulation of adaptive and innate immunity, counterregulatory responses to immune dysregulation, insulin deficiency and hyperglycemia. Research Design and Methods: Microarray analysis was performed on PBMCs from 43 patients with newly diagnosed T1D, 12 patients with newly diagnosed type 2 diabetes (T2D) and 24 healthy controls. One and four month follow-up samples were obtained from 20 of the T1D patients.
Gene expression in peripheral blood mononuclear cells from children with diabetes.
Sex, Age, Treatment, Race
View SamplesThe analysis of patient blood transcriptional profiles offers a means to investigate the immunological mechanisms relevant to human diseases on a genome-wide scale. In addition, such studies provide a basis for the discovery of clinically relevant biomarker signatures. We designed a strategy for microarray analysis that is based on the identification of transcriptional modules formed by genes coordinately expressed in multiple disease data sets. Mapping changes in gene expression at the module level generated disease-specific transcriptional fingerprints that provide a stable framework for the visualization and functional interpretation of microarray data. These transcriptional modules were used as a basis for the selection of biomarkers and the development of a multivariate transcriptional indicator of disease progression in patients with systemic lupus erythematosus. Thus, this work describes the implementation and application of a methodology designed to support systems-scale analysis of the human immune system in translational research settings.
A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus.
Sex, Age, Race
View SamplesWe designed a strategy for microarray analysis that is based on the identification of transcriptional modules formed by genes coordinately expressed in multiple disease data sets. Mapping changes in gene expression at the module level generated disease-specific transcriptional fingerprints that provide a stable framework for the visualization and functional interpretation of microarray data.
A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus.
Sex, Age, Race
View SamplesTranscriptional modules were used as a basis for the selection of biomarkers and the development of a multivariate transcriptional indicator of disease progression in patients with systemic lupus erythematosus.
A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus.
Sex, Age, Race
View SamplesGene expression analysis of 7d-old Arabidopsis seedlings exposed to short term (2 h) hypoxia, long term (9 h) hypoxia, and 1 h reoxygenation after long term (9 h) hypoxia to evaluate the regulation of gene expression at the level of translation.
Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana.
Age
View SamplesEffects of hyperglycaemia and genetic background differences on renal gene expression
Comparative analysis of methods for gene transcription profiling data derived from different microarray technologies in rat and mouse models of diabetes.
Sex, Age, Specimen part, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Histone Deacetylase 3 Is Required for Efficient T Cell Development.
Specimen part
View SamplesHdac3 is an important target of HDAC inhibitors used in the treatment of cutaneous T cell lymphoma. In order to gain an understanding of Hdac3 function in T cells,we deleted Hdac3 from early mouse thymocytes using LCK-Cre. Hdac3 deletion resulted in a loss of single positive thymocytes due to a defect in positive selection at the double positive (DP) stage of thymocyte development. To better characterize this defect, we sorted the DP1 and DP2 populations to for gene expression profiling. Overall design: Total RNA was extracted from DP1 (GFP+CD4+CD8+CD5loTCRblo) or DP2 (GFP+CD4+CD8+CD5hiTCRbint) thymocytes isolated by FACS from Hdac3+/+ or Hdac3F/F LCK-Cre+ animals. Libraries were constructed from rRNA-depleted total RNA pools to identify altered gene expression in DP populations following Hdac3 deletion.
Histone Deacetylase 3 Is Required for Efficient T Cell Development.
Specimen part, Cell line, Subject
View SamplesAtherosclerosis is a transmural chronic inflammatory condition of small and large arteries that is associated with adaptive immune responses at all disease stages. However, impacts of adaptive immune reactions on clinically apparent atherosclerosis such as intima lesion (plaque) rupture, thrombosis, myocardial infarction, and aneurysm largely remain to be identified. It is increasingly recognized that leukocyte infiltrates in plaque, media, and adventitia are distinct but their specific roles have not been defined. To map these infiltrates, we employed laser capture microdissection (LCM) to isolate the three arterial wall laminae using apoE-/- mouse aorta as a model. RNA from LCM-separated tissues was extracted and large scale whole genome expression microarrays were prepared. We observed that the quality of the resulting gene expression maps was compromised by tissue RNA carried over from adjacent laminae during LCM. To account for these flaws, we established quality controls and algorithms to improve the predictive power of LCM-derived microarray data. Our approach creates robust transcriptome atlases of normal and atherosclerotic aorta. Assessing LCM transcriptomes for immunity-related mRNAs indicated markedly distinctive gene expression patterns in the three laminae of the atherosclerotic aorta. These mouse mRNA expression data banks can now be mined to address a wide range of questions in cardiovascular biology.
The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
GPI-80 defines self-renewal ability in hematopoietic stem cells during human development.
Specimen part
View Samples