RNA sequencing was performed to investigate ionizing radiation-dependent transcriptional change in human pluripotent cells and differentiated cells. Overall design: Examined 3 types of cells (fibroblasts, iPS cells and neural progenitor cells) and 2 types of treatments (non IR or IR), total 6 samples were analyzed.
Reprogramming and differentiation-dependent transcriptional alteration of DNA damage response and apoptosis genes in human induced pluripotent stem cells.
Specimen part, Treatment, Subject
View SamplesThe forced expression of Yamanaka factors (Oct3/4, Sox2, Klf4, and c-Myc) reprograms cells into induced pluripotent stem cells (iPSCs) through a series of sequential cell fate conversions. The order and robustness of gene expression changes are highly depended on the Yamanaka factor stoichiometry. We specifically focused on two different reprogramming paths induced by high- and low-Klf4 stoichiometry, which were accomplished by introducing OK+9MS or OKMS polycistronic cassettes, respectively, into mouse embryonic fibroblasts. By comparing these reprograming intermediates with embryonic stem cells (ESCs) and primary keratinocytes, we identified high-Klf4 specific, transiently up-regulated epithelial genes. We found that expression of these epithelial genes was enriched in a TROP2-positive cell population. Moreover, we identified a set of transcription factors which are candidates for the regulation of transiently expressed epithelial genes, and revealed their connection to high-Klf4-specific reprogramming hallmarks.
OVOL1 Influences the Determination and Expansion of iPSC Reprogramming Intermediates.
Specimen part, Treatment
View SamplesTo determine the role of NOTCH3 in human esophageal epitheila homeostasis/squamous cell differentiation
A NOTCH3-mediated squamous cell differentiation program limits expansion of EMT-competent cells that express the ZEB transcription factors.
Specimen part, Treatment
View SamplesWerner syndrome (WS) is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. In the present study, we describe the effects of long-term culture on WS iPSCs, which acquired and maintained infinite proliferative potential for self-renewal over 2 years. After long-term cultures, WS iPSCs exhibited stable undifferentiated states and differentiation capacity, and premature upregulation of senescence-associated genes in WS cells was completely suppressed in WS iPSCs despite WRN deficiency.
Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture.
Specimen part
View SamplesThe eukaryotic cytoplasmic chaperonin-containing TCP-1 (CCT) is a complex formed by two back-to-back stacked hetero-octameric rings that assists the folding of actins, tubulins and other proteins in an ATP-dependent manner. Here, we decided to test the significance of the hetero-oligomeric nature of CCT for its function by introducing, in each of the eight subunits in turn, an identical mutation at a position involved in ATP binding and conserved in all the subunits, in order to establish the extent of individuality of the various subunits. Our results show that these identical mutations lead to dramatically different phenotypes. For example, cells with the mutation in CCT2 have an excess of actin patches and are the only pseudo-diploid strain. By contrast, cells with the mutation in CCT7 are the only ones to accumulate juxta-nuclear protein aggregates that may reflect the absence of stress response in this strain. System-level analysis of the strains using RNA microarrays reveals connections between CCT and several cellular networks including ribosome biogenesis and TOR2 that help to explain the phenotypic variability observed
Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes.
No sample metadata fields
View SamplesDuring seed maturation, the embryo accumulates nutrition storage compounds such as oil and reservve proteins, and acquires dormancy and desiccation tolerance. Arabidopsis transcription factors LEC1, LEC2, FUS3 and ABI3 are known as the master regulators of seed maturation because all these events during the seed maturation are severely affected by the respective mutants. In addition, the lec1, lec2 and fus3 mutants exhibit some heterochronic characteristics, as exemplified by the development of true leaf-like cotyledons during embryogenesis. To characterize these mutants at the whole genome expression level, microarray experiments were performed.
Cell-by-cell developmental transition from embryo to post-germination phase revealed by heterochronic gene expression and ER-body formation in Arabidopsis leafy cotyledon mutants.
Specimen part
View Samplestranscriptomic analysis in rosette leaves of bru1-2 and WT(Col) plants (24-day-old)
Ectopic gene expression and organogenesis in Arabidopsis mutants missing BRU1 required for genome maintenance.
Age, Specimen part
View SamplesmDC and pDC exhibit distinct TLR expression pattern and differ in their responses to various TLR ligands. The goal of this study was to identify genes, that were differentally expressed between mDC and pDC as a means to determine how TLR signaling pathways operate. Suprisingly, expression of TLR-assoociated signaling proteins were found to be present at equivalent levels between mDC and pDC, despite differential expression of TLRs, and thus revealing insight into use of adaptor proteins that function as general regulators of TLR signaling pathways in both cell types.
A promiscuous lipid-binding protein diversifies the subcellular sites of toll-like receptor signal transduction.
Specimen part
View SamplesMesenchymal stromal cells (MSCs) are used extensively in clinical trials; however, the potential for malignant transformation of MSCs has been raised. We examined the genomic stability versus the tumor forming capacity of multiple mouse MSCs. Murine MSCs have been shown to be less stable and more prone to malignant transformation than their human counterparts. A large series of independently isolated MSC populations exhibited low tumorigenic potential under syngeneic conditions, which increased in immune-compromised animals. Unexpectedly, higher ploidy correlated with reduced tumor forming capacity. Furthermore, in both cultured MSCs and primary hepatocytes, polyploidization was associated with a dramatic decrease in the expression of the long non-coding RNA H19. Direct knockdown of H19 expression in diploid cells resulted in acquisition of polyploid cell traits. Moreover, artificial tetraploidization of diploid cancer cells led to a reduction of H19 levels, as well as to an attenuation of the tumorigenic potential. Polyploidy might therefore serve as a protective mechanism aimed at reducing malignant transformation through the involvement of the H19 regulatory long non-coding RNA.
Polyploidization of murine mesenchymal cells is associated with suppression of the long noncoding RNA H19 and reduced tumorigenicity.
Specimen part
View SamplesWe sorted approx. 10000 neurons per sample from day one adult worms. We collected two wildtype samples and three thoc-5(wy822) mutant samples. Overall design: RNAseq of FACS-sorted C.elegans neurons from wildtype and thoc-5(wy822) mutant animals.
The THO Complex Coordinates Transcripts for Synapse Development and Dopamine Neuron Survival.
Specimen part, Subject
View Samples