This SuperSeries is composed of the SubSeries listed below.
Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.
No sample metadata fields
View SamplesCLK targets from fly heads using the TIM-GAL4; UAS-CLKGR line
Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.
No sample metadata fields
View Samples6 Timepoint microarray from control strain
Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.
No sample metadata fields
View Samples6 Timepoints from 5073 strain
Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.
No sample metadata fields
View SamplesExperiments performed in S2 cells to identify direct CLK targets
Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.
No sample metadata fields
View SamplesS2 cells transfected with pAc-Clk or empty vector
Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.
No sample metadata fields
View SamplesWT flies or flies of the strain Tim-gal4; UAS-MJD78Q. All samples were collected at ZT16 after 3 days of training in LD conditions.
Neurotoxic protein expression reveals connections between the circadian clock and mating behavior in Drosophila.
No sample metadata fields
View SamplesMost organisms have an endogenous circadian clock that is synchronized to environmental signals such as light and temperature. Although circadian rhythms have been described in the nematode C. elegans at the behavioral level, these rhythms appear to be relatively non-robust. Moreover, in contrast to other animal models, no circadian transcriptional rhythms have been identified. Thus, whether this simple nematode contains a bona fide circadian clock remains an open question.
Genome-wide analysis of light- and temperature-entrained circadian transcripts in Caenorhabditis elegans.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A role for microRNAs in the Drosophila circadian clock.
Specimen part, Time
View SamplesCbtOE (Tim-gal4; UAS-cbtFLAG), Tim-gal4 (control for CbtOE), cbtRNAi (Tim-gal4-UAS-Dcr2-UAS-cbtIR-cbtE1) and Tim-gal4;UAS-Dcr2 (control for CbtRNAi) flies. Flies were entrained in LD (light: dark) condition for 3-4 days and harvested at six time points: ZT3, ZT7, ZT11, ZT15, ZT19, ZT23 Fly heads were collected, RNA was extracted and RNA-seq libraries were prepared as previously described (Engreitz et al., 2013) Overall design: Three samples of cbtRNAi and three samples of their controls. Two samples of cbtOE with two samples of their controls.
The transcription factor Cabut coordinates energy metabolism and the circadian clock in response to sugar sensing.
Specimen part, Subject, Time
View Samples