This study examined the effects of genetic knockdown of autophagy genes on vertebrate cardiac development
Autophagy is essential for cardiac morphogenesis during vertebrate development.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cell competition is a tumour suppressor mechanism in the thymus.
Specimen part
View SamplesLeukemia cells are considered developmentally 'frozen', and their phenotype is thought to reflect their stage of origin. To gain insights into the cell population from which T-ALL arises, we compared by global gene expression profiling T-ALL samples (n = 10) to different stages of T cell development, following the order from early thymic progenitor (ETP), to triple negative (TN) TN2, to TN3, to TN4, to immature single positive (ISP), to double positive (DP) thymocytes.
Cell competition is a tumour suppressor mechanism in the thymus.
Specimen part
View SamplesWild type thymi were transplanted into a competitive (wild type hosts), or non-competitive (Rag2-/-c-/-KitW/Wv hosts) environment. Triple negative 2 and 3 (TN2/3) stages were sorted 14 days afetr transplantation and separated for cells of host or donor origin.
Cell competition is a tumour suppressor mechanism in the thymus.
Specimen part
View SamplesTranscriptome was assessed in the transitions from the normal thymus (with regular progenitor turnover), to a thymus devoid of extrinsic progenitor competition for 10 weeks, to fully malignant T cell acute lymphoblastic leukemia (T-ALL).
Cell competition is a tumour suppressor mechanism in the thymus.
Specimen part
View SamplesGene expression profiles of bipolar disorder (BD) patients were assessed during both a manic and a euthymic phase and compared both intra-individually, and with the gene expression profiles of controls.
Investigation of manic and euthymic episodes identifies state- and trait-specific gene expression and STAB1 as a new candidate gene for bipolar disorder.
Specimen part, Disease, Subject
View SamplesCNBP is a eukaryote-conserved nucleic-acid binding protein required in mammals for embryonic development. It contains seven CCHC-type zinc-finger domains and was suggested to act as a nucleic acid chaperone, as well as a transcription factor. Here, we identify all CNBP isoforms as cytoplasmic messenger RNA (mRNA)-binding proteins. Using Photoactivatable Ribonucleoside Enhanced Cross-linking and Immunoprecipitation, we mapped its binding sites on RNA at nucleotide-level resolution on a genome-wide scale and find that CNBP interacted with 3961 mRNAs in human cell lines, preferentially at a G-rich motif close to the AUG start codon on mature mRNAs. Loss- and gain-of-function analyses coupled with system-wide RNA and protein quantification revealed that CNBP did not affect RNA abundance, but rather promoted translation of its targets. This is consistent with an RNA chaperone function of CNBP helping to resolve secondary structures, thus promoting translation. Overall design: CNBP protein knockdown and RNA-seq
The Human CCHC-type Zinc Finger Nucleic Acid-Binding Protein Binds G-Rich Elements in Target mRNA Coding Sequences and Promotes Translation.
No sample metadata fields
View SamplesmRNAs are key molecules in gene expression and subject to diverse regulatory events. Regulation is accomplished by distinct sets of trans-acting factors that interact with mRNAs and form defined mRNA-protein complexes (mRNPs). The resulting “mRNP code” determines the fate of any given mRNA and thus determines the gene regulation at the post-transcriptional level. The La-related protein 4B (LARP4B) belongs to an evolutionarily conserved family of RNA binding factors characterized by the presence of a La-module implicated in direct RNA binding. Biochemical experiments have shown direct interactions of LARP4B with factors of the translation machinery. This finding along with the observation of an association with actively translating ribosomes suggested that LARP4B is a factor contributing to the mRNP code. To gain insight into the function of LARP4B in vivo we tested its mRNA association at the transcriptome level and its impact on the proteome. PAR-CLIP analyses allowed us to identify the in vivo RNA targets of LARP4B. We show that LARP4B binds to a distinct set of cellular mRNAs by contacting their 3´UTRs. Biocomputational analysis combined with in vitro binding assays identified the LARP4B binding motif on mRNA targets. The reduction of cellular LARP4B levels leads to a marked destabilization of its mRNA targets and consequently to their reduced translation. Our data identify LARP4B as a component of the mRNP code that influences the expression of its mRNA targets by affecting their stability. Overall design: RNAseq experiments of HEK293 cells which were transfected with siRNAs targeting LARP4B and firefly luciferase as controls. The experiment was performed in triplicates.
LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation.
No sample metadata fields
View SamplesUsing whole-genome Affymetrix microarrays (HG-U133A), we characterized the transcriptome profile of cultured human macrophages stimulated for 4 h with interleukin 1 (IL-1) or interleukin 6 (IL-6). We found that, in distinction to liver cells, IL-1 is much more potent than IL-6 in modifying macrophage gene expression, although considerable heterogeneity in response of macrophages deriving from individual blood donors was observed. The obtained results permitted to identify a large number of cytokine-responsive genes. coding for proteins of unknown function that are now being studied in our laboratory. They may represent novel targets in the anti-inflammatory therapy.
Identification of interleukin-1 and interleukin-6-responsive genes in human monocyte-derived macrophages using microarrays.
No sample metadata fields
View SamplesPlants with decreased SWC4 expression levels displayed several pleiotropic phenotypic alterations, suggesting that this gene participates in the regulation of different developmental processes. To evaluate genes whose expression was misregulated in SCW4 RNAi line, we performed RNA-seq differential expression analysis.
Arabidopsis SWC4 Binds DNA and Recruits the SWR1 Complex to Modulate Histone H2A.Z Deposition at Key Regulatory Genes.
Age, Specimen part
View Samples