Sulfur mustard (HD) is a vesicating agent that targets the eyes, skin, and lungs, producing skin burns, conjunctivitis, and compromised respiratory function.
Acute Gene Expression Profile of Lung Tissue Following Sulfur Mustard Inhalation Exposure in Large Anesthetized Swine.
Sex, Specimen part
View SamplesTranslocations of ETS transcription factors are driver mutations in diverse cancers. We investigated the genomic network of the ETS fusion EWS/FLI1 in Ewing's sarcoma (ESFT) as a model of ETS-driven tumorigenesis. ChIP-Seq and transcriptional analysis identified E2F3 as a principle co-factor of EWSFLI1 defining functionally distinct gene sets. While EWS/FLI1 binding independent of E2F3 predominantly associated with repressed differentiation genes, significant co-localization with E2F3 was discovered at proximal promoters of activated growth-related genes. Thus, EWS/FLI1 promotes oncogenesis by simultaneously perturbing differentiation state and augmenting the expression of genes co-regulated by E2F3. Integration of additional E2F3 and ERG localization data from prostate cancer containing TMPRSS2/ERG verified that the ETS-E2F module is also found in prostate cancer and may be of general relevance to ETS driven cancers.
Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate cancer.
Disease, Cell line, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
AMPK and PPARdelta agonists are exercise mimetics.
No sample metadata fields
View SamplesExercise activates serine/threonine kinase AMPK and transcriptional factor PPARdelta that re-model metabolism and endurance capacity of skeletal muscle. Whether and how synthetic activation of these molecules regulated muscle gene signature is unknown.
AMPK and PPARdelta agonists are exercise mimetics.
No sample metadata fields
View SamplesExercise training increases endurance by inducing global gene expression changes in skeletal muscles. The extent to which the genetic effects of exercise can be mimicked by synthetic drugs is unknown.
AMPK and PPARdelta agonists are exercise mimetics.
No sample metadata fields
View SamplesLangerhans cell histiocytosis (LCH) is a disease characterized by the accumulation of eponymous CD1a+ Langerin+ Langerhans-cell (LC)-like dendritic cells (DC) of largely unknown origin. Here we have performed comparative transcriptome analysis of highly purified CD207+/CD1a+ Langerhans cell histiocytosis (LCH) cells derived from different locations and disease courses and three major human dendritic cell lineages: epidermal Langerhans cells, myeloid dendritic cells (mDC1) and plasmacytoid dendritic cells (pDC) in order to investigate the relationship between LCH cells and naturally occurring dendritic cells. Data obtained indicate that LCH cells form a distinct DC entity. Furthermore, we have identified transcripts that are uniquely expressed by LCH cells in comparison to LC, mDC1, and pDC, and induce LCH-specific features in human DC.
Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells.
Specimen part
View SamplesSilicon (Si) has long been known to play a major physiological role in certain organisms, including some sponges and many diatoms and higher plants, leading to the recent identification of multiple proteins responsible for silicon transport in a range of algal and plant species. In mammals, despite several convincing studies suggesting that silicon is an important factor in bone development and connective tissue health, there is a critical lack of understanding in biochemical pathways that enable silicon homeostasis. Here we report the identification of a mammalian efflux silicon transporter, namely Slc34a2 (also known as NaPiIIb), which was upregulated in the kidneys of rats following chronic dietary silicon deprivation. When heterologously expressed in Xenopus laevis oocytes, the protein displayed marked silicon transport activity, specifically efflux, comparable to plant OsLsi2 transfected in the same fashion and independent of sodium and/or phosphate influx. This is the first evidence for a specific active transporter protein for silicon in mammals and suggests an important role for silicon in vertebrates.
Identification of a mammalian silicon transporter.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome.
Specimen part
View SamplesTo address the impact of cellular origin on AML, we generated an inducible transgenic mouse model for MLL-AF9 driven leukemia. MLL-AF9 expression in long-term hematopoietic stem cells (LT-HSCs) in vitro resulted in unprecedented clonogenic growth and expression of genes involved in migration and invasion. In vivo, some LT-HSC-derived AMLs were particularly aggressive with extensive tissue infiltration, chemo-resistance and expression of genes related to epithelial-mesenchymal transition (EMT) in solid cancers. Knockdown of the EMT regulators Zeb1 and Tcf4 significantly reduced leukemic blast invasion. By classifying mouse and human leukemia according to Evi1/EVI1and Erg/ERG expression, reflecting aggressiveness and cell-of-origin and performing comparative transcriptomics we identified numerous EMT-related genes that were significantly associated with poor overall survival of AML patients. Overall design: RNA from FACS sorted bone marrow subpopulations was isolated, RNA-sequencing libraries were prepared and sequenced on an Illumina HiSeq 2000. Reads mapping to RefSeq transcripts were counted.
MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome.
No sample metadata fields
View SamplesTo address the impact of cellular origin on AML, we generated an inducible transgenic mouse model for MLL-AF9 driven leukemia. MLL-AF9 expression in long-term hematopoietic stem cells (LT-HSCs) in vitro resulted in unprecedented clonogenic growth and expression of genes involved in migration and invasion. In vivo, some LT-HSC-derived AMLs were particularly aggressive with extensive tissue infiltration, chemo-resistance and expression of genes related to epithelial-mesenchymal transition (EMT) in solid cancers. Knockdown of the EMT regulators Zeb1 and Tcf4 significantly reduced leukemic blast invasion. By classifying mouse and human leukemia according to Evi1/EVI1and Erg/ERG expression, reflecting aggressiveness and cell-of-origin and performing comparative transcriptomics we identified numerous EMT-related genes that were significantly associated with poor overall survival of AML patients.
MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome.
Specimen part
View Samples