Transcriptome analysis of 12 zebrafish tissues
Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database.
No sample metadata fields
View SamplesPurpose: There is growing evidence that interaction between stromal and tumor cells is pivotal in breast cancer progression and response to therapy. Since the pioneer work of Allinen et al. suggested that during breast cancer progression striking changes occur in CD10+ stromal cells, we aimed to better characterize this cell population and its clinical relevance.
Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment.
Specimen part, Disease stage
View SamplesIn order to determine the imprinted transcription factor Zac1 targets, we overexpressed Zac1 in a mouse insulinoma cell line and measured the regulated expressed genes by RNA-seq. We have shown that Zac1 regulates many genes belonging to the Imprinted Gene Network, including genes coding for the extra-cellular matrix. Overall design: Determination of Zac1 target genes in transfected Min6 cells (4 biological replicates) using RNA-seq, .
Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network.
Specimen part, Subject
View SamplesIn vitro differentiation of embryonic stem cells (ESC) provides models that reproduce in vivo development and cells for therapy. Whether the epigenetic signatures that are crucial for brain development and function and that are sensitive to in vitro culture are similar between native brain tissues and their artificial counterpart generated from ESC is largely unknown. Here, using RNA-seq we have compared the parental origin-dependent expression of imprinted genes (IGs), a model of epigenetic regulation, in cerebral cortex generated either in vivo, or from ESCs using in vitro corticogenesis, a model that reproduces the landmarks of in vivo corticogenesis. For a majority of IGs, the expressed parental alleles were the same for in vivo and in vitro cortex. In most cases, this choice was already set in ESCs and faithfully maintained during the 3 weeks of in vitro corticogenesis. Confirming these findings, methylation, which selects the parental allele to be transcribed, was also largely equivalent between the 2 types of cortex and ESCs. Our results thus indicate that the allele specific expression of imprinted transcripts, a model of epigenetic regulation resulting from a differential methylation of parental genomes, is mostly mimicked in cortical cells derived from ESC. Overall design: We have crossed two strains of mice (B6 and JF1) that display more than 12 million of SNPs (Takada et al., Genome Res. 2013 Aug;23(8):1329-38. doi: 10.1101/gr.156497.113). We have then analyzed allele specific expression transcriptome-wide using RNA-seq on hybrid F1 cortex generated either in vivo or in vitro from ESCs. In addition, we have used 2 different developmental stages of in vivo cortex (E13.5, P0) and three stages in vitro (undiffererentiated ESC, and differentiated into cortex for 12 and 21 days) to measure the dynamics of parental expression. Please note that [1] the same raw data files were used to generate the ''*allele-specific_sense_read_bases_by_gene_withoutContamination.txt'' processed data files. [2] The samples associated with each file are indicated in the file column header (as their GSM accession numbers). [3] The readme.txt file contains the data processing steps, file description.
In Vitro Corticogenesis from Embryonic Stem Cells Recapitulates the In Vivo Epigenetic Control of Imprinted Gene Expression.
No sample metadata fields
View SamplesAstrocytes, the most prominent glial cell type in the brain, send specialized processes called endfeet around blood vessels and express a large molecular repertoire regulating the cerebrovascular system physiology. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein Connexin 43 and 30 (Cx43 and Cx30) allowing in particular for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. In this study, we addressed the specific role of Cx30 at the gliovascular interface. Using an inactivation mouse model for Cx30 (Cx30?/?), we showed that absence of Cx30 does not affect blood-brain barrier (BBB) organization and permeability. However, it results in the cerebrovascular fraction, in a strong upregulation of Sgcg encoding g-Sarcoglycan (SG), a member of the Dystrophin-associated protein complex (DAPC) connecting cytoskeleton and the extracellular matrix. The same molecular event occurs in Cx30T5M/T5M mutated mice, where Cx30 channels are closed, demonstrating that Sgcg regulation relied on Cx30 channel functions. We further characterized the cerebrovascular Sarcoglycan complex (SGC) and showed the presence of a-, ß-, d-, ?-, e- and ?- SG, as well as Sarcospan. Altogether, our results suggest that the Sarcoglycan complex is present in the cerebrovascular system, and that expression of one of its members, g-Sarcoglycan, depends on Cx30 channels. As described in skeletal muscles, the SGC may contribute to membrane stabilization and signal transduction in the cerebrovascular system, which may therefore be regulated by Cx30 channel-mediated functions. Overall design: Comparison of 3-month-old Cx30 deleted mice against WT genetic background.
The Sarcoglycan complex is expressed in the cerebrovascular system and is specifically regulated by astroglial Cx30 channels.
No sample metadata fields
View SamplesFCRL4 is an immunoregulatory receptor that belongs to the Fc receptor-like (FCRL) family. In healthy individuals, this protein is specifically expressed by memory B cells (MBCs) and is preferentially localized in subephitelial regions of lymphoid tissues. An expansion of FCRL4+ B cells has been shown in blood or other tissues in various infectious or autoimmune pathologies. In the present work, we generated and characterized in vitro FCRL4+ B cells from purified MBCs using T-dependent and/or T-independent stimulation. FCRL4+ B cells account for 17% of cells generated at day-4 of culture. Transcriptomic and phenotypic analysis of FCRL4+ cells show that they are closely related to FCRL4+ tonsillar MBCs. Interestingly, these cells highly express inhibitory receptors genes as described for exhausted FCRL4+ MBCs in the blood of HIV-viremic individuals. In agreement, in vitro generated FCRL4+ B cells show a significant underexpression of cell cycle genes with a two fold weaker number of cell division compared to FCRL4- cells. Finally, resulting from their reduced proliferation and differentiation potential, we show that FCRL4+ cells are not prone to generate plasma cells, contrary to FCRL4- cells. Given the difficulty to access to in vivo FCRL4+ cells, our in vitro model could be of major interest to study the biology of normal and pathological FCRL4+ cells.
Characterization of human FCRL4-positive B cells.
Specimen part
View SamplesWe used microarrays to compared gene expression profilings in various tumors of the kidney.
Balanced Translocations Disrupting SMARCB1 Are Hallmark Recurrent Genetic Alterations in Renal Medullary Carcinomas.
Specimen part
View Samplesaffy_ccr_maize - affy_ccr_maize - Cinnamoyl-CoA reductase (CCR) catalyzes a key step in monolignol biosynthesis. We show that downregulation of CCR in maize was associated with lower lignin content and a strong decrease in H units. Concomitantly, these cell wall modifications were associated with higher digestibility. On another hand, immunocytochemistry indicated a modification of lignification pattern and cellulose content. Transcript profiling was used as comprehensive phenotyping tools to investigate how CCR downregulation impacted metabolism and the biosynthesis of other cell wall polymers. -2 wild type and 2 CCR mutants were compared. Plants were grown in greenhouse condition and harvested at 7-8 leaf stages.
Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: effects on lignification, fibre development, and global gene expression.
No sample metadata fields
View SamplesThe ontogeny of human Langerhans cells (LCs) remains poorly characterized, in particular the nature of LC precursors and the factors that may drive LC differentiation. Through a systematic transcriptomic analysis of TSLP-activated dendritic cells (DCs), we unexpectedly identified markers that have been associated with a skin-homing potential as well as with a LC phenotype. We performed transcriptomic analysis of TSLP-activated blood DCs, as compared to freshly purified, Medium-, and TNF-activated DCs. Among TSLP up-regulated genes, we identified molecules associated with skin homing, LC phenotype, and LC function, as determined by a literature-based survey. Conversely, genes not expressed in LCs were not found among TSLP-induced genes. Further experiments showed that TGF- synergized with TSLP leading to the differentiation of blood BDCA-1+ DCs into bona fide Birbeck granule-positive LCs.
Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-β.
Specimen part
View SamplesTo clarify the effect of SHP in LXRs-mediated signaling pathway, we performed global gene expression analysis of SHP siRNA transfected- or control siRNA transfected- astrocytes after IFN- and LXRs agonist. Microarray analysis revealed that expression of several genes encoding inflammatory mediators were reversed in SHP siRNA transfected-astrocytes, when compared with control siRNA transfected-astrocytes.
Small heterodimer partner SHP mediates liver X receptor (LXR)-dependent suppression of inflammatory signaling by promoting LXR SUMOylation specifically in astrocytes.
Age, Specimen part
View Samples