Developmentally synchronized animals were obtained by hypochlorite treatment of gravid adults to release embryos. Synchronized embryos were hatched on NGM plates and grown at 20°C until 48 h after the L4 stage of development. Fluorodeoxyuridine was used to prevent the development of second-generation embryos once animals reached fertile adulthood. For each RNA-seq experiment, populations for odIs77[Pcol-19::UbG76V-GFP] and dop-1(vs100); [Pcol- 19::UbG76V-GFP] were grown simultaneously under the same conditions. Total RNA was isolated from animals using trizol (Invitrogen) combined with Bead Beater lysis in 3 biological replicates, and an mRNA library (single-end, 50-bp reads) was prepared for each sample/replicate using Illumina Truseq with PolyA selection. Overall design: Examination of mRNA levels in adults dop-1 mutants and wild-type animals.
Dopamine signaling promotes the xenobiotic stress response and protein homeostasis.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Skeletal muscle microRNA and messenger RNA profiling in cofilin-2 deficient mice reveals cell cycle dysregulation hindering muscle regeneration.
Specimen part
View SamplesmRNA Expression in Quadriceps Muscle from Cofilin-2 Null Mice Compared to WT Littermates on Day 7
Skeletal muscle microRNA and messenger RNA profiling in cofilin-2 deficient mice reveals cell cycle dysregulation hindering muscle regeneration.
Specimen part
View SamplesThe R47H variant of TREM2 is associated with higher risk of Alzheimer's disease. We generated mice expressing the common variant or R47H variant of human TREM2
Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The transcriptional programme controlled by Runx1 during early embryonic blood development.
Specimen part, Cell line
View SamplesThe HT29 derivative cell line HT29-MTX-E12 (E12) produces an adherent mucus layer predominantly of the gastric MUC5AC mucin when grown on transwells. This mucus layer supports Helicobacter pylori survival in culture. E12 cells were infected with H. pylori and the transcriptome of infected and uninfected E12 were compared. Also included for comparison was the HT29 parent cell line grown on transwells.
Glycosylation-related gene expression in HT29-MTX-E12 cells upon infection by <i>Helicobacter pylori</i>.
Cell line
View SamplesTranscription factors have long been recognised as powerful regulators of mammalian development, yet it is largely unknown how individual key regulators operate within wider regulatory networks. Here we have used a combination of global gene expression and chromatin-immunoprecipitation approaches across four ES-cell-derived populations of increasing haematopoietic potential to define the transcriptional programme controlled by Runx1, an essential regulator of blood cell specification. Integrated analysis of these complementary genome-wide datasets allowed us to construct a global regulatory network model, which suggested that core regulatory circuits are activated sequentially during blood specification, but will ultimately collaborate to control many haematopoietically expressed genes. Using the CD41/integrin alpha 2b gene as a model, cellular and in vivo studies showed that CD41 is controlled by both early and late circuits in fully specified blood cells, but initiation of CD41 expression critically depends on a later subcircuit driven by Runx1. Taken together, this study represents the first global analysis of the transcriptional programme controlled by any key haematopoietic regulator during the process of early blood cell specification. Moreover, the concept of interplay between sequentially deployed core regulatory circuits is likely to represent a design principle widely applicable to the transcriptional control of mammalian development.
The transcriptional programme controlled by Runx1 during early embryonic blood development.
Specimen part, Cell line
View SamplesSchizophrenia is a complex psychiatric disorder encompassing a range of symptoms and etiology dependent upon the interaction of genetic and environmental factors. Several risk genes, such as DISC1, have been associated with schizophrenia as well as bipolar disorder (BPD) and major depressive disorder (MDD), consistent with the hypothesis that a shared genetic architecture could contribute to divergent clinical syndromes. The present study compared gene expression profiles across three brain regions in post-mortem tissue from matched subjects with schizophrenia, BPD or MDD and unaffected controls. Post-mortem brain tissue was collected from control subjects and well-matched subjects with schizophrenia, BPD, and MDD (n=19 from each group). RNA was isolated from hippocampus, Brodmann Area 46, and associative striatum and hybridized to U133_Plus2 Affymetrix chips. Data were normalized by RMA, subjected to pairwise comparison followed by Benjamini and Hochberg False Discovery Rate correction (FDR). Samples derived from patients with schizophrenia exhibited many more changes in gene expression across all brain regions than observed in BPD or MDD. Several genes showed changes in both schizophrenia and BPD, though the magnitude of change was usually larger in schizophrenia. Several genes that have variants associated with schizophrenia were found to have altered expression in multiple regions of brains from subjects with schizophrenia. Continued evaluation of circuit-level alterations in gene expression and gene-network relationships may further our understanding of how genetic variants may be influencing biological processes to contribute to psychiatric disease.
STEP levels are unchanged in pre-frontal cortex and associative striatum in post-mortem human brain samples from subjects with schizophrenia, bipolar disorder and major depressive disorder.
Sex, Age, Specimen part, Disease, Disease stage, Race
View SamplesDecidualization is a critical process for embryo implatation during which uterine stromal fibroblasts are transformed into large, epithelioid-like decidual cell. NOTCH1 is recepotor of Notch signaling that plays important roles for cell-cell communication, which involves gene regulatory mechanisms that control multiple cellular differentiation processes during embryonic and adult life.
Decreased Notch pathway signaling in the endometrium of women with endometriosis impairs decidualization.
Cell line
View SamplesDeletion of the Ikaros DNA-binding domain generates dominant-negative isoforms that interfere with Ikaros family activity and correlate with poor prognosis in human precursor B cell acute lymphoblastic leukemias (B-ALL). Here, we show that conditional inactivation of the Ikaros DNA binding domain in early pre-B cells arrests their differentiation at a stage where integrin-dependent niche adhesion augments mitogen-activated protein kinase signaling, proliferation, and self-renewal, and attenuates pre-B cell receptor signaling and differentiation. Transplantation of polyclonal Ikzf1 mutant pre-B cells results in long-latency oligoclonal pre-B-ALL, demonstrating that loss of Ikaros contributes to multistep B-leukemogenesis. These results explain how normal pre-B cells transit from a highly proliferative and stromal-dependent to a stromal-independent phase where differentiation is enabled, providing potential therapeutic strategies for IKZF1 mutant B-ALL. Overall design: One of the analyses described in this manuscript is the differential gene expression of large preB cells sorted from the bone marrow of WT and IKDN mice. The RNASeq method and Deseq analysis algorithm were employed
Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia.
No sample metadata fields
View Samples