Bulked segregant analysis (BSA) is an efficient method to rapidly and efficiently map genes responsible for mutant phenotypes. This procedure, however, requires access to quantitative genetic markers that are polymorphic in the mapping population. We have developed a modification of BSA (BSR-Seq) that makes use of RNA-Seq reads to efficiently map genes even in populations for which no polymorphic markers have been previously identified. Because of the digital nature of next-generation sequencing (NGS) data, it is possible to conduct de novo SNP discovery and quantitatively genotype BSA samples using the same RNA-Seq data. In addition, analysis of the RNA-Seq data provides information on the effects of the mutant on global patterns of gene expression at no extra cost. In combination these results greatly simplify gene cloning experiments. To demonstrate the utility of this strategy BSR-Seq was used to clone the glossy3 (gl3) gene of maize. Mutants of the glossy loci exhibit altered accumulation of epicuticular waxes on juvenile leaves. We previously generated a large collection of glossy mutants using the Mu transposon system. By subjected a reference allele to BSR-Seq, we were able to map the gl3 locus to a ~2.3Mb interval that is consistent with the results of prior mapping experiments. The single gene located in the 2.3Mb mapping interval that contained a Mu insertion and whose expression was down-regulated in the mutant pool was subsequently demonstrated to be the gl3 gene via the analysis of multiple independently Mu transposon induced mutant alleles. The gl3 gene encodes a putative myb transcription factor, which directly or indirectly affects the expression of a number of genes involved in the biosynthesis of very-long-chain fatty acids.
Changes in genome content generated via segregation of non-allelic homologs.
No sample metadata fields
View SamplesThe objective of this study was to determine the effects of miR-106a~363 blockade on the gene expression profile of Ewing Sarcoma cell lines (Sk-ES-1 cells)
Growth-promoting role of the miR-106a~363 cluster in Ewing sarcoma.
Specimen part, Cell line
View SamplesEwing Sarcoma is the second most common solid pediatric malignant neoplasm of the bone and soft tissue. Driven by EWS/Ets, or rarely variant, oncogenic fusions, Ewing Sarcoma is a biologically and clinically aggressive disease with a high propensity for metastasis. Our laboratory has previously identified the Jumonji-domain H3K9 me 1/2 histone demethylase KDM3A as a novel oncogene downstream of EWS/Fli1, the most common oncofusion in Ewing Sarcoma. Herein, we uncover a role for KDM3A in the promotion of Ewing Sarcoma metastasis.
The histone demethylase KDM3A, and its downstream target MCAM, promote Ewing Sarcoma cell migration and metastasis.
Cell line
View SamplesThe objective of this study was to determine the effect of Thyroid Hormone Responsive Protein Spot14 (Spot14) overexpression on the gene expression profiles of tumors from MMTV-Neu mice. Hemizygous MMTV-Neu and MMTV-Spot14 mice were bred and 1 cm tumors from Neu control or Neu/Spot14 bitransgenic offspring were profiled using Affymetrix gene arrays. Tumors from Neu/Spot14 mice emerged significantly earlier than controls, but expressed many genes associated with lactogenic differentiation and were not highly metastatic. These results from the mouse model are consistent with observations from primary human breast tumors, which indicate that high Spot14 gene expression was directly correlated with a luminal subtype and a positive ER status. Overexpression of Spot14 in cultured mammary epithelial cells stimulated proliferation but not differentiation. Together, these data suggest that, in vivo, Spot14 is expressed in well-differentiated cells, and promotes the expansion of this population in the context of oncogenic signaling pathway activation.
Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis.
Specimen part
View SamplesThe objective of this study was to determine the effect of Thyroid Hormone Responsive Protein Spot14 (Spot14) loss on the gene expression profiles of tumors from MMTV-Polyomavirus middle-T antigen (PyMT) mice. MMTV-PyMT/S14-heterozygous mice were crossed with S14-heterozygous mice and 1 cm tumors from MMTV-PyMT control (wild-type S14) or MMTV-PyMT/S14-null offspring were profiled using Affymetrix gene arrays. Tumor latency was not different between groups; however, tumors lacking S14 grew significantly slower than control tumors. Loss of S14 also decreased the levels of de novo synthesized fatty acids in mammary tumors. In additional studies, performed on MMTV-Neu mice, we found that S14 overexpression was associated with increased tumor cell proliferation and elevated levels of tumor fatty acids. Gene expression profiling revealed that S14 loss and overexpression in mouse mammary tumors altered pathways associated with proliferation and metabolism. This study provides important information about the role of S14 in mammary tumorigenesis and tumor metabolism.
Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis.
No sample metadata fields
View SamplesThe goal of this study was to examine whether immune responses to Plasmodium chabaudi infection differ between the sexes and are altered by the presence of gonadal steroids. Gonadally-intact males were more likely than intact females to die following P. chabaudi infection, exhibit slower recovery from infection-associated weight loss, hypothermia, and anemia, have reduced IFN-associated gene expression and IFN production during peak parasitemia, and produce less antibody during the recovery phase of infection. Gonadectomy of male and female mice altered these sex-associated differences, suggesting that sex steroid hormone, in particular androgens and estrogens, may modulate immune responses to infection.
Involvement of gonadal steroids and gamma interferon in sex differences in response to blood-stage malaria infection.
No sample metadata fields
View SamplesWe previously identified toll-like receptor 4 (Tlr4) as a candidate gene responsible for ozone (O3)-induced pulmonary hyperpermeability and inflammation. The objective of this study was to determine the mechanism through which TLR4 modulates O3-induced pulmonary responses and to utilize transcriptomics to determine TLR4 effector molecules. C3H/HeJ (HeJ; Tlr4 mutant) and C3H/HeOuJ (OuJ; Tlr4 normal), mice were exposed continuously to 0.3 ppm O3 or filtered air for 6, 24, 48 or 72 hr. Affymetrix Mouse430A_MOE gene arrays were used to analyze lung homogenates from HeJ and OuJ mice followed using a bioinformatic analysis. Inflammation was assessed by bronchoalveolar lavage and molecular analysis by ELISA, immunoblotting, and transcription factor activity. TLR4 signals through both the MYD88-dependent and independent pathways in OuJ mice, which involves MAP kinase activation, NF-kappaB, AP-1, and KC. Microarray analyses identifiedTLR4 responsive genes for strain and time in OuJ versus HeJ mice (p<0.05). One significantly upregulated cluster of genes in OuJ were the heat shock proteins (Hspa1b; Hsp70), Hsp90ab1). Furthermore, O3-induced expression of HSP70 protein was increased in OuJ compared to HeJ mice following 24-48 h O3. Moreover, BAL polymorphonuclear leukocytes (PMN) and total protein were significantly reduced in response to O3 in Hspa1a/Hspa1btm1Dix (Hsp70-/-) compared to Hsp70+/+ mice (p<0.05). TLR4 signaling (MYD88-dependent), ERK1/2, AP-1 activity, and KC protein content were also significantly reduced after O3 exposure in Hsp70-/- compared to Hsp70+/+ mice (p<0.05). These studies suggest that HSP70 is involved in the regulation of O3-induced lung inflammation through the TLR4 pathway and provide evidence that HSP70 is an endogenous in vivo TLR4 ligand.
Identification of candidate genes downstream of TLR4 signaling after ozone exposure in mice: a role for heat-shock protein 70.
Sex, Specimen part, Treatment
View SamplesWolbachia, an endosymbiotic bacterium, is being investigated as a vector control agent in several insect species. Along with the well known classical reproductive parasitism Wolbachia employs against its host to spread within the population, it is emerging that the bacteria can protect the host against pathogens and reduced pathogen transmission. Anopheles mosquitoes, which transmit malaria, have never been found to harbour Wolbachia in nature, and despite numerous transinfection attempts, no stable line has been developed.
Wolbachia infections in Anopheles gambiae cells: transcriptomic characterization of a novel host-symbiont interaction.
No sample metadata fields
View SamplesAlthough an important association between lymph node metastasis and poor prognosis in breast cancer was observed decades ago, an active role for the lymphatic system in metastatic dissemination has only recently been examined. We demonstrate that the Six1 homeoprotein promotes peri- and intra-tumoral lymphangiogenesis, lymphatic invasion, and distant metastasis of breast cancer cells. We identify the pro-lymphangiogenic factor, VEGF-C, as required for this process, and demonstrate transcriptional induction as the mechanism of regulation of VEGF-C expression by Six1. Using a different, but complementary animal model, we show that while required, VEGF-C is not sufficient for the pro-metastatic effects of Six1. Verifying the clinical significance of this pro-metastatic Six1-VEGF-C axis, we demonstrate co-expression of Six1 and VEGF-C in human breast cancer.
SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer.
Specimen part, Cell line
View SamplesMouse mammary carcinoma cell line 4TO7 was used in this experiment. Six2 overepxression experiment.The mouse Six2 cDNA taken from CMV-sport6 (Open Biosystems) was cloned into a pcDNA3.1-hygromycin vector and transfected into 4TO7 cells, after which stably transfected cells were selected. Gene expression profiles were performed in triplicate for the control and over-expressed lines.
Homeoprotein Six2 promotes breast cancer metastasis via transcriptional and epigenetic control of E-cadherin expression.
Cell line
View Samples