Analysis of gene expression at RNA level by 4 different cell sorted Vg9Vd2 subsets (Subset 1=CD28+CD27+, Subset2=CD28-CD27+, Subset 3=CD28-CD7-CD16-, Subset 4 = CD28-CD27-CD16+). Results highlight differences in RNA expression characterising these four cell populations into distinct phenotypic subsets with distinct functional potential
Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals.
Specimen part
View SamplesEnteroendocrine L-cells release hormones that control metabolism and appetite and are targets under investigation for the treatment of diabetes and obesity. Understanding L-cell diversity and expression profiles is critical for identifying target receptors that will translate into altered hormone secretion. We performed single cell RNA sequencing of mouse L-cells from the upper small intestine to distinguish cellular populations, revealing that L-cells form 3 major clusters: a group with typical characteristics of classical L-cells, including high expression of Gcg and Pyy; a cell type overlapping with Gip-expressing K-cells; and a unique cluster expressing Tph1 and Pzp that was predominantly located in duodenal villi and co-produced 5HT. Expression of G-protein coupled receptors differed between clusters, suggesting the cell types are differentially regulated, and would be differentially targetable. Our findings support the emerging concept that many enteroendocrine cell populations are highly overlapping, with individual cells producing a range of peptides previously assigned to distinct cell types. Overall design: Single cell RNA sequencing of mouse duodenal L-cells cells
Single-cell RNA-sequencing reveals a distinct population of proglucagon-expressing cells specific to the mouse upper small intestine.
Specimen part, Subject
View SamplesPurpose: The goal of this study is to investigate the role of CBS enzyme in colorectal carcinogenesis Methods: RNA-Seq transcriptome analysis of CBS-overexpression in NCM356 cels compared to control vector cells Overall design: RNA-seq transcriptome profiling of NCM356-CBS overexpressing cells vs. vector cells
Upregulation of Cystathionine-β-Synthase in Colonic Epithelia Reprograms Metabolism and Promotes Carcinogenesis.
Subject
View SamplesHuman peripheral monocytes have been categorized into three subsets based on differential expression levels of CD14 and CD16. However, the factors that influence the distribution of monocyte subsets and the roles which each subset plays in autoimmunity are not well studied. To compare the gene expression profiling 1) on intermediate monocytes CD14++CD16+ monocytes between healthy donors and autoimmune uveitis patients and 2) among 3 monocyte subsets in health donors, here we purified circulating intermediate CD14++CD16+ monocytes from 5 patients with autoimmune uveitis (labeled as P1-5) and 4 healthy donors (labeled as HD1-4) by flow cytometry and isolated total RNA to proceed microarray assay. In addition, we also purified CD14+CD16++ (non-classical monocytes) and CD14++CD16- (classical monocytes) from 4 healthy donors to do microarray. We demonstrate that CD14++CD16+ monocytes from patients and healthy control donors share a similar gene expression profile. The CD14+CD16++ cells (non-classical monocytes) display the most distinctive gene expression profiling when compared to intermediate CD14++CD16+ monocytes and classical CD14++CD16- monocytes.
CD14++CD16+ Monocytes Are Enriched by Glucocorticoid Treatment and Are Functionally Attenuated in Driving Effector T Cell Responses.
Specimen part, Disease stage, Subject
View SamplesSmall non-coding RNAs (sncRNAs) have been proposed as potential vectors of the interface between genes and environment. Here, we report that environmental conditions involving traumatic stress in early life, alter miRNA and piRNA composition in sperm of adult males in mice. Overall design: Examination of small RNA content of sperm from males, that experienced early chronic stress during their first two weeks of life versus small RNA content of sperm from control males.
Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice.
Sex, Disease, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Hypomethylation of the IL17RC promoter associates with age-related macular degeneration.
Age, Specimen part, Disease, Cell line
View SamplesAge related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly population worldwide. While recent studies have demonstrated strong genetic associations of single nucleotide polymorphisms within a number of genes and AMD, other modes of regulation are also likely to play a role in its aetiology. We undertook DNA methylation microarray analysis on monozygotic and dizygotic twins who were discordant for AMD and identified methylated IL17RC promoters as being present only in non-AMD control individuals rather than in AMD patients. We validated this finding of a significantly decreased level of methylation on the IL17RC promoter in AMD siblings as well as in a case control study involving 202 genetically unrelated AMD patients and 96 controls (95% CI, 0.03-0.17, P=3.1x10-8). Further, we showed that hypomethylation of the IL17RC promoter in AMD patients led to an elevated expression of its protein and mRNA in peripheral blood as well as in the retina and choroid, suggesting that the DNA methylation pattern and expression of IL17RC may potentially serve as a biomarker for the diagnosis of AMD and likely plays a role in disease pathogenesis.
Hypomethylation of the IL17RC promoter associates with age-related macular degeneration.
Specimen part, Cell line
View SamplesBackground
Hypomethylation of the IL17RC promoter associates with age-related macular degeneration.
Age, Specimen part
View SamplesProgenitors of the first hematopoietic cells in the mouse arise in the early embryo from Brachyury-positive multipotent cells in the posterior-proximal region of the epiblast, but the mechanisms that specify primitive blood cells are still largely unknown. Pluripotency factors maintain uncommitted cells of the blastocyst and embryonic stem cells in the pluripotent state. However, little is known about the role played by these factors during later development, despite their being expressed in the postimplantation epiblast. Using a dual transgene system for controlled expression at postimplantation stages, we found that Nanog blocks primitive hematopoiesis in the gastrulating embryo, resulting in a loss of red blood cells and downregulation of erythropoietic genes. Accordingly, Nanog deficient embryonic stem cells are prone to erythropoietic differentiation. Moreover, Nanog expression in adults prevents the maturation of erythroid cells. By analysis of previous data for NANOG binding during stem cell differentiation and CRISPR/Cas9 genome editing, we found that Tal1 is a direct NANOG target. Our results show that Nanog regulates primitive hematopoiesis by directly repressing critical erythroid lineage specifiers. Overall design: MEPs mRNA profiles of adult mice Nanog-tg treated and untreated with doxycycline were generated by deep sequencing, in triplicate, using Illumina GAIIx.
The pluripotency factor NANOG controls primitive hematopoiesis and directly regulates <i>Tal1</i>.
Cell line, Subject
View SamplesAll mRNA was isolated after 8 hours of culture time in each of three culture conditions. (1) TCPS Plate, (2) Collagen-GAG 2 dimensional coated plate and (3) collagen-GAG three dimensional mesh.
Fibroblast remodeling activity at two- and three-dimensional collagen-glycosaminoglycan interfaces.
No sample metadata fields
View Samples