HPV E6 from the genus alpha 'high risk' types such as HPV16 recruit the ubiquitin ligase E6AP to ubiquitinate p53 and target it for proteasome-mediated degradation. This results in the functional inactivation of p53 in HPV16-E6 expressing cells.
Genus beta human papillomavirus E6 proteins vary in their effects on the transactivation of p53 target genes.
Specimen part, Cell line
View SamplesAnalysis of gene expression over serial 150um sections of a single gestational week 14.5 human neocortical specimen. The hypothesis tested with this dataset was that a transcriptional signature of radial glia (neural stem cells) could be isolated via unsupervised gene coexpression analysis due to variation in the abundance of this cell type from section to section. This dataset is the first of its kind generated using this method (Gene Coexpression Analysis of Serial Sections, or GCASS).
Radial glia require PDGFD-PDGFRβ signalling in human but not mouse neocortex.
Age, Specimen part
View SamplesThe ability to form memories is a prerequisite for an organism’s behavioural adaptation to environmental changes. At the molecular level, the acquisition and maintenance of memory requires changes in chromatin modifications. In an effort to unravel the epigenetic network underlying both short- and long-term memory, we examined chromatin modification changes in two distinct mouse brain regions, two cell-types, and three time-points before and after contextual learning. Here we show that histone modifications predominantly change during memory acquisition and correlate surprisingly little with changes in gene expression. While long-lasting changes are almost exclusive to neurons, learning-related histone modification and DNA methylation changes occur also in non-neuronal cell types, suggesting a functional role for non-neuronal cells in epigenetic learning. Finally, our data provides evidence for a molecular framework of memory acquisition and maintenance, wherein DNA methylation could alter the expression and splicing of genes involved in functional plasticity and synaptic wiring. Overall design: We examined chromatin modification changes in two distinct mouse brain regions (CA1 and ACC), two cell-types (neurons, non-neurons), and three time-points before and after contextual learning (naive, 1h, 4w).
DNA methylation changes in plasticity genes accompany the formation and maintenance of memory.
Sex, Age, Cell line, Subject
View SamplesIn addition to its well-know function in chromosome segregation, increasing evidence implicates cohesin in the control of gene expression. It has been previously reported that inactivation of the cohesin loader Mis4 in G1-arrested cells leads to the dissociation of cohesin from chromatin. We exploited this experimental situation to ask whether this loss of cohesin would affect gene expression on a genome-wide scale.
Role for cohesin in the formation of a heterochromatic domain at fission yeast subtelomeres.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System.
Age, Specimen part, Disease, Cell line, Treatment
View SamplesHnRNPA2B1 encodes an RNA binding protein associated with neurodegenerative disorders. However, its function in the nervous system is unclear. Transcriptome-wide cross-linking and immunoprecipitation in mouse spinal cord discover UAGG motifs enriched within ~2,500 hnRNP A2/B1 binding sites and an unexpected role for hnRNP A2/B1 in alternative polyadenylation. Loss of hnRNP A2/B1 results in alternative splicing, including skipping of an exon in amyotrophic lateral sclerosis (ALS)-associated D-amino acid oxidase (DAO) that reduces D-serine metabolism. Inclusion of the DAO exon is also reduced in transgenic ALS mice models. ALS-associated hnRNP A2/B1 D290V mutant patient fibroblasts and motor neurons differentiated from induced pluripotent stem cells demonstrate gain-of-mutant-dependent splicing differences. Mutant motor neurons also exhibit increased hnRNP A2/B1 localization to cytoplasmic granules during stress, which are abrogated by a small molecule CA43. Our findings and cellular resource identify RNA networks affected in loss of normal and mutated hnRNP A2/B1 with broad relevance to neurodegeneration.
Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System.
Specimen part, Disease, Treatment
View SamplesHnRNPA2B1 encodes an RNA binding protein associated with neurodegenerative disorders. However, its function in the nervous system is unclear. Transcriptome-wide cross-linking and immunoprecipitation in mouse spinal cord discover UAGG motifs enriched within ~2,500 hnRNP A2/B1 binding sites and an unexpected role for hnRNP A2/B1 in alternative polyadenylation. Loss of hnRNP A2/B1 results in alternative splicing, including skipping of an exon in amyotrophic lateral sclerosis (ALS)-associated D-amino acid oxidase (DAO) that reduces D-serine metabolism. Inclusion of the DAO exon is also reduced in transgenic ALS mice models. ALS-associated hnRNP A2/B1 D290V mutant patient fibroblasts and motor neurons differentiated from induced pluripotent stem cells demonstrate gain-of-mutant-dependent splicing differences. Mutant motor neurons also exhibit increased hnRNP A2/B1 localization to cytoplasmic granules during stress, which are abrogated by a small molecule CA43. Our findings and cellular resource identify RNA networks affected in loss of normal and mutated hnRNP A2/B1 with broad relevance to neurodegeneration.
Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System.
Specimen part, Disease, Treatment
View SamplesHnRNPA2B1 encodes an RNA binding protein associated with neurodegenerative disorders. However, its function in the nervous system is unclear. Transcriptome-wide cross-linking and immunoprecipitation in mouse spinal cord discover UAGG motifs enriched within ~2,500 hnRNP A2/B1 binding sites and an unexpected role for hnRNP A2/B1 in alternative polyadenylation. Loss of hnRNP A2/B1 results in alternative splicing, including skipping of an exon in amyotrophic lateral sclerosis (ALS)-associated D-amino acid oxidase (DAO) that reduces D-serine metabolism. Inclusion of the DAO exon is also reduced in transgenic ALS mice models. ALS-associated hnRNP A2/B1 D290V mutant patient fibroblasts and motor neurons differentiated from induced pluripotent stem cells demonstrate gain-of-mutant-dependent splicing differences. Mutant motor neurons also exhibit increased hnRNP A2/B1 localization to cytoplasmic granules during stress, which are abrogated by a small molecule CA43. Our findings and cellular resource identify RNA networks affected in loss of normal and mutated hnRNP A2/B1 with broad relevance to neurodegeneration. Overall design: RNA-seq in mouse spinal after injection with ASO against hnRNP A2/B1 or saline. Three or four replicates per condition
Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System.
Specimen part, Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.
Sex, Subject
View SamplesEpigenomic and transcriptomic analysis of Systemic Sclerosis CD4+ T cells reveals long range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci range dysregulation of key inflammatory pathways mediated by disease-associated
Epigenomics and transcriptomics of systemic sclerosis CD4+ T cells reveal long-range dysregulation of key inflammatory pathways mediated by disease-associated susceptibility loci.
Sex, Subject
View Samples