Background: Studies in mice have shown that PPAR is an important regulator of lipid metabolism in liver and a key transcription factor involved in the adaptive response to fasting. However, much less is known about the role of PPAR in human liver. Here we set out to study the function of PPAR in human liver via analysis of whole genome gene regulation in human liver slices treated with the PPAR agonist Wy14643.
The impact of PPARα activation on whole genome gene expression in human precision cut liver slices.
Sex, Specimen part, Treatment, Subject, Time
View SamplesLittle is known about the early transcriptional events in innate immune signaling in immature and tolerogenic monocyte-derived dendritic cells (DCs), the professional antigen-presenting cells of our immune system. TLR ligands usually induce a proinflammatory transcriptional response, whereas IL10 and/or dexamethasone induce a more tolerogenic phenotype.
MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters.
Specimen part
View SamplesGENES ASSOCIATED WITH THE CELL CYCLE, LINEAGE COMMITMENT AND IMMUNOMODULATORY POTENTIAL DISCRIMINATE HUMAN POSTNATAL STEM CELLS OF DIFFERENT ORIGIN.
Functional differences between mesenchymal stem cell populations are reflected by their transcriptome.
No sample metadata fields
View SamplesSkeletal muscle adapts to resistance exercise (RE) performance acutely and chronically. An important regulatory step of muscle adaptation to RE is gene expression. Microarray analysis can be used as an exploratory method to investigate how genes and gene clusters are modulated acutely and chronically by RE. The purpose of the present study was to investigate the effect of training status in the basal (rested) and pre- to 24h post-RE on the global transcriptome in vastus lateralis muscle biopsies of young men. Muscle biopsies of nine young men who undertook RE training for 10-wks were collected pre and 24h post-RE at the first (W1) and last (W10) weeks of training and analysed using microarray. An unaccustomed RE bout (at W1) up-regulated muscle gene transcripts related to stress (e.g., heat shock proteins), damage and inflammation, structural remodelling, protein turnover and increased translational capacity. Trained muscles (at W10) became more efficient metabolically, as training favoured a more oxidative metabolism, refined response to stress, showed by genes suppression related to RE-induced stress and inflammation, and up-regulated genes indicating greater muscle contractile efficiency and contribution to promote muscle growth and development. These data highlight that chronic repetition of RE increases muscle efficiency and adapt muscles to respond more specifically and accurately to RE-induced stress.
Resistance training in young men induces muscle transcriptome-wide changes associated with muscle structure and metabolism refining the response to exercise-induced stress.
Sex, Specimen part
View SamplesIn this study we aimed to identify a baseline intrahepatic transcriptional signature associated with response in chronic hepatitis B patients treated with peginterferon-alfa-2a (peg-IFN) and adefovir.
An intrahepatic transcriptional signature of enhanced immune activity predicts response to peginterferon in chronic hepatitis B.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin.
Age, Specimen part, Cell line, Treatment, Time
View SamplesOne major class of anti-cancer drugs targets topoisomerase II to induce DNA double-strand breaks and cell death of fast growing cells. In vitro experiments showed that doxorubicin can induce histone eviction as well as DNA damage, while etoposide can only induce DNA damage. Here, we compare the transcription responses of different tissues to doxorubicin or etoposide treatment in vivo.
Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin.
Age, Specimen part, Treatment, Time
View SamplesResistance towards anti-angiogenic therapy (AAT) still represents a substantial clinical challenge. We report here that tumor-infiltrating mast cells (MC) are powerful mediators decreasing efficacy of AAT in mice and cancer patients. They act in a cell-extrinsic manner by secreting granzyme B, which liberates pro-angiogenic mediators from the extracellular matrix. In addition, MC also diminish efficacy of anti-angiogenic agents in a cell-autonomous way, which can be blocked by the mast cell degranulation inhibitor cromolyn. Our findings are relevant in humans because patients harboring higher numbers of MC in their tumors have an inferior outcome after anti-angiogenic treatment in the Gepar Quinto randomized Phase 3 clinical trial. Thus, MC-targeting might represent a novel promising approach to increase efficacy of AAT.
Mast cells decrease efficacy of anti-angiogenic therapy by secreting matrix-degrading granzyme B.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene expression profiling in human precision cut liver slices in response to the FXR agonist obeticholic acid.
Sex, Specimen part, Treatment, Subject, Time
View SamplesBackground: The bile acid-activated farnesoid X receptor (FXR) is a nuclear receptor regulating bile acid, glucose and cholesterol homeostasis. Obeticholic acid (OCA; also known as INT-747 or 6-ethyl-chenodeoxycholic acid), a promising drug for the treatment of non-alcoholic steatohepatitis (NASH) and type 2 diabetes, activates FXR. Mouse studies demonstrated that FXR activation by OCA (INT-747) alters hepatic expression of many genes. However, no data are available on the effects of OCA in human liver. Here, we generated gene expression profiles in human precision-cut liver slices (hPCLS) after treatment with OCA.
Gene expression profiling in human precision cut liver slices in response to the FXR agonist obeticholic acid.
Sex, Specimen part, Treatment, Time
View Samples